
The tool of thought for expert programming

User Guide
Version 12.0

Copyright  1982-2008 by Dyalog Limited.

All rights reserved.

Version 12.0.3

First Edition August 2008

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyalog Limited, South Barn, Minchens Court, Minchens

Lane, Bramley, Hampshire RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or

fitness for any particular purpose. Dyalog Limited reserves the right to revise this
publication without notification.

TRADEMARKS:

Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.

Windows, Windows NT, Windows 2000, Visual Basic and Excel are trademarks of Microsoft Corporation.
The Dyalog Std TT, Dyalog Alt TT, and APL385 Unicode fonts are the copyright of Adrian Smith.

TrueType is registered trademark of Apple Computer, Inc.

All other trademarks and copyrights are acknowledged.

 iii

Contents
C H A P T E R 1 INSTALLATION AND CONFIGURATION ..1

Files and Directories ..1
File Naming Conventions ... 1

Classic and Unicode Editions...2
APL Fonts...3

Unicode Edition .. 3
Classic Edition .. 3

Integrated APL Keyboard (Unicode Edition Only) ..4
Introduction... 4
On-Screen Keyboard... 4

Interoperability and Compatibility ...5
Introduction... 5
Implementation ... 6
Workspaces ... 6
Small (32-bit) Component files and External Variables.. 7
Large (64-bit) Component files... 7
Sockets (Type 'APL') .. 7
Auxiliary Processes... 8
Session Files ... 8

The APL Command Line...9
APL Exit Codes...10
Configuration Parameters..10

Introduction... 10
Setting Parameter Values .. 11
How APL Obtains Parameter Values.. 11

Registry Sub-Folders ..30
AutoComplete ... 30
Charts.. 30
Colours.. 30
Event Viewer .. 30
Explorer .. 30
files ... 30
KeyboardShortcuts.. 31
LanguageBar ... 31
Printing ... 31
SALT .. 31
Search ... 31
Threads ... 31
ValueTips.. 31
WindowRects.. 31

Workspace Management...32
Workspace Size and Compaction.. 32

Interface with Windows ..33

iv Contents

Auxiliary Processors .. 33
Introduction .. 33
Starting an AP... 34
Using the AP... 34
Terminating the AP... 34
Example:... 35

Access Control for External Variables... 36
ODBC Configuration (SQAPL.INI) ... 37
Creating Executables .. 38

Version Information.. 41
Run-Time Applications and Components... 42

Bound run-time... 43
Workspace based run-time.. 43
Out-of-process COM Server ... 44
In-process COM Server .. 44
ActiveX Control.. 45
Microsoft .Net Assembly.. 45
Additional Files for SQAPL ... 46
Miscellaneous Other Files... 47
Registry Entries for Run-Time Applications .. 47
Installing Registry Entries... 48

COM Objects and the Dyalog APL DLL.. 49
Introduction .. 49
Classes, Instances and NameSpace Cloning ... 49
Workspace Management... 50
Multiple COM Objects in a Single Workspace... 51
Parameters .. 51

System Errors... 52
Introduction .. 52
Workspace Integrity.. 52
System Exceptions.. 53
Recovering Data from aplcore files .. 54
Reporting Errors to Dyalog... 54
System Error Dialog Box.. 54
Debugging your own DLLs .. 57

C H A P T E R 2 THE APL ENVIRONMENT ... 59

Introduction.. 59
Session Configuration... 59
Keyboard Configuration ... 60
Using the Mouse... 61
Drag-and-Drop Editing ... 62

Interrupts.. 62
Unicode Edition Keyboard... 63

Introduction .. 63
Installation .. 63
Configuring your APL Keyboard for Use... 65

On-Screen Keyboard.. 70

 Contents v

Classic Edition Keyboard...72
Unified Layout .. 72
Traditional Layout... 74
Line-Drawing Symbols ... 76

Keyboard Shortcuts ..77
Unicode Edition .. 77
Classic Edition .. 78

The Session Colour Scheme..81
Syntax Colouring in the Session ... 82

The Session Window ...82
Window Management ... 83
Docking... 84

Entering and Executing Expressions ..91
Introduction... 91
Language Bar .. 92

Value Tips...95
Configuring Value Tips .. 98

SharpPlot Graphics ..99
Introduction... 99
Data Structures.. 99
Examples... 100
Implementation ... 102
Notes ... 102

The Session GUI Hierarchy..103
The Session MenuBar ...104

The File Menu... 104
Export ... 106
The Edit Menu .. 109
The View Menu .. 110
The Window Menu ... 110
The Session Menu... 111
The Log Menu... 112
The Action Menu .. 112
The Options Menu .. 114
The Threads Menu .. 115
The Tools Menu.. 116
The Help Menu ... 117

Session Pop-Up Menu ..118
The Session Toolbars..120

Workspace (WS) Operations... 121
Object Operations ... 122
Tools ... 124
Edit Operations ... 125
Session Operations.. 126

The Session Status Bar ...127
Toggle Status Fields.. 128

vi Contents

The Configuration Dialog Box... 129
General Tab .. 129
Unicode Input Tab (Unicode Edition Only).. 131
Input Tab (Classic Edition Only) .. 132
Output Tab.. 133
Keyboard Shortcuts Tab ... 134
Workspace Tab ... 135
Network Tab ... 136
Windows Tab.. 138
Session Tab... 140
Log Tab .. 142
Trace/Edit Tab .. 144
Auto Complete Tab... 146
SALT .. 148
Object Syntax Tab .. 150

Colour Selection Dialog... 152
Syntax Colouring.. 153
Schemes.. 153
Changing Colours ... 153
Show Idioms ... 153
Single Background.. 153
Function Editor ... 154
Session Input... 154
Only current input line.. 154
HotKeys.. 154

Print Configuration Dialog Box... 155
Setup Tab.. 155
Margins Tab.. 157
Header/Footer Tab .. 158
Printer Tab .. 161

Status Window.. 162
The Workspace Explorer Tool ... 163

Exploring the Workspace.. 164
Viewing and Arranging Objects ... 165
Moving and Copying Objects ... 166
Editing and Renaming Objects ... 166
Using the Explorer as an Editor .. 167
The File Menu .. 168
The Edit Menu .. 169
The Columns Menu .. 169
The View Menu .. 170
The Tools Menu.. 171

Browsing Classes ... 172
Browsing Class Scripts ... 173

 Contents vii

Browsing Type Libraries and .Net Metadata..176
Browsing Registered Libraries.. 177
Loading a Type Library .. 178
Browsing Loaded Libraries... 179
Object CoClasses .. 180
Objects .. 182
Event Sets ... 185
Enums ... 186
Browsing .Net Classes .. 187

Find Objects Tool ...193
Object Properties Dialog Box ..197

Properties Tab ... 197
Value Tab.. 198
Monitor Tab .. 199
COM Properties Tab ... 200
Net Properties Tab .. 201

The Editor...202
Invoking the Editor ... 202
Window Management (Standard) ... 203
Window Management (Classic Dyalog mode).. 206
Editor ToolBar .. 208
The File Menu... 209
The Edit Menu .. 210
The View Menu .. 212
The Window Menu ... 213
Using the Editor .. 214
Find and Replace Dialogs ... 216

The Tracer ..219
Tracing an expression ... 219
Naked Trace .. 219
Automatic Trace.. 219
Tracer Options .. 220
The Trace Window.. 221
Trace Tools ... 222
Controlling Execution ... 226
Using the Session and the Editor... 226
Setting Break-Points ... 227
The Classic mode Tracer... 228

The Threads Tool..230
Thread States... 231
Paused/Normal.. 231
Threads Tool Pop-Up Menu.. 232

Debugging Threads ..233
The Event Viewer..237

The Spy Menu... 238
The Columns Menu... 239
The Select Menu ... 240
The Options Menu .. 240
Options Dialog Box .. 241

viii Contents

Closing the Session .. 243
The Session Object ... 244
Configuring the Session ... 248

Changing the Font... 249
Changing Menu Appearance... 249
Reorganising the Menu Structure ... 250
Adding your own MenuItem... 251
Adding your own Tool Button.. 252

C H A P T E R 3 APL FILES.. 255

Introduction.. 255
External Variables ... 257

Overview .. 257
Sharing External Variables ... 259
Controlling Multi-User Access ... 260

Component Files .. 261
Introduction .. 261
Overview .. 261
Tying and Untying Files ... 261
Tie Numbers ... 261
Creating and Removing Files.. 261
Adding and Removing Components ... 262
Reading and Writing Components.. 262
Component Information.. 262
Multi-User Access .. 262
File Access Control... 263
User 0.. 265
General File Operations .. 265
Component File System Functions ... 266
Using the Component File System.. 267

Programming Techniques .. 270
Controlling Multi-User Access ... 270

File Design... 273
Internal Structure... 274
Component File Control Mechanisms.. 277

Introduction .. 277
The FSCB File.. 279

How it Works.. 279
Error Conditions ... 280
Limitations.. 281

The Effect of Buffering ... 282
APL File Integrity Check ... 283

Error Reports .. 284
Operating System Commands .. 285
Error Messages .. 285

 Contents ix

C H A P T E R 4 ERROR TRAPPING ..287

Error Trapping Concepts ...287
Last Error number and Diagnostic Message.. 288
Error Trapping Control Structure.. 289
Trap System Variable: �TRAP.. 291

Example Traps..292
Dividing by Zero... 292
Other Errors .. 294
Global Traps ... 295
Dangers ... 296
Looking out for Specific Problems ... 297
Cut-Back versus Execute .. 298

Signalling Events ..300
Flow Control ... 301

Index ...303

x Contents

 1

C H A P T E R 1

Installation and Configuration

Files and Directories

File Naming Conventions
The following file naming conventions have been adopted for the various files

distributed with and used by Dyalog APL/W.

 Extension Description

 .DWS Dyalog APL Workspace

 .DSE Dyalog APL Session

 .DCF Dyalog APL Component File

 .DXV Dyalog APL External Variable

 .DIN Dyalog APL Input Table

 .DOT Dyalog APL Output Table

 .DFT Dyalog APL Format File

 .DXF Dyalog APL Transfer File

 .DLF Dyalog APL Session Log File

 .dyalog Dyalog APL SALT file

 .dyapp Dyalog APL SALT application file

2 Dyalog APL/W User Guide

Classic and Unicode Editions
The defining feature of Version 12.0 is support for Unicode character data. This

necessarily entails a change in the internal format of character arrays stored in the

workspace and on component files and in external variables. This in turn means that

the adoption of Unicode may require code changes and data conversions in

applications.

For this reason, Version 12.0 and a limited number of future Versions of Dyalog will

be available in two separate editions; Unicode and Classic.

• The Unicode edition is intended for users who need to develop Unicode

applications now, and are prepared to make the necessary (usually small)

changes to existing applications in order to support new Unicode character

types.

• The Classic edition is intended for customers who want to take advantage of

other product enhancements, but do not wish to use Unicode at this time.

The two different editions are maintained from the same source code, and every effort

will be made to ensure that they are identical except for the handling of character

arrays, and the transfer of data into and out of the workspace.

 Chapter 1: Installation and Configuration 3

APL Fonts

Unicode Edition
The default font for the Unicode Edition is APL385 Unicode1 which is a TrueType

font and is installed as part of Version 12. APL385 Unicode is the font used to print

APL characters in this manual. In principle, you may use any other Unicode font that

includes the APL symbols, such as Arial Unicode MS (available from Microsoft).

Classic Edition
In the Classic Edition, there are two types of APL font provided; bitmap (screen) and

TrueType. There are also two different layouts, which referred to as Std and Alt.

The bitmap fonts are designed for the screen alone and are named Dyalog Std and

Dyalog Alt. The TrueType fonts have a traditional 2741-style italic appearance and are

named Dyalog Std TT and Dyalog Alt TT.1

The Std layout, which was the standard layout for Versions of Dyalog APL up to

Version 10.1 contains the APL underscored alphabet�-�. The underscored alphabet

is a deprecated feature and is only supported in this Version of Dyalog APL for

backwards compatibility.

The Alt layout, which replaces the Std layout as the standard layout for Version 12.0

Classic Edition, does not have the underscored alphabet, but contains additional

National Language characters in their place. Note that the extra National Language

symbols share the same �AV positions with the underscored alphabet. If, for example,

you switch from the Std font layout to the alternative one, you will see the symbol Á

(A-acute) instead of the symbol -.

You may use either a bitmap font or a TrueType font in your APL session (see Chapter

2 for details). You MUST use a TrueType font for printing APL functions.

1 The Dyalog Std TT, Dyalog Alt TT, and APL385 Unicode fonts are the copyright of

Adrian Smith.

4 Dyalog APL/W User Guide

Integrated APL Keyboard (Unicode Edition Only)

Introduction
Unicode Edition supports the use of standard Windows keyboards that have the

additional capability to generate APL characters when the user presses Ctrl, Alt, AltGr

(or some other combination of meta keys) in combination with the normal character

keys.

Version 12.0 is supplied with two sets of such keyboards (one using Ctrl and one using

AltGr) for a range of different languages. These keyboards were created using the

Microsoft Keyboard Layout Creator (MSKLC) and you may use the same tool to

customise one of the supplied keyboards or to create a new one.

During the installation of Dyalog Version 12.0 Unicode Edition, setup installs one or

two APL keyboard layouts onto your system. These keyboard layouts are installed as

additional services for your default Input Language. For further details, see Unicode

Edition Keyboard on page 63.

On-Screen Keyboard
Included with Dyalog APL Version 12.0 Unicode Edition is the Comfort On-Screen

Keyboard 2.1 which has been specially extended for use with Dyalog APL and is

distributed under a licence agreement with Comfort Software. The On-Screen

keyboard is a really useful tool that works with any Windows application and replaces

Kibitzer in the Unicode Edition. Kibitzer remains part of the Classic Edition.

 Chapter 1: Installation and Configuration 5

Interoperability and Compatibility

Introduction
Workspaces and component files are stored on disk in a binary format (illegible to text

editors). This format differs between machine architectures and among versions of

Dyalog. For example a file component written by a PC will almost certainly have an

internal format that is different from one written by a UNIX machine. Similarly, a

workspace saved from Dyalog Version 12 will differ internally from one saved by a

previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able

to interoperate by sharing workspaces and component files. However, this is not

always possible. For example, if a new internal data structure is introduced in a

particular version of Dyalog APL, previous versions could not be expected to make

sense of it. In this case the load (or copy) from the older version would fail with the

message:

 this WS requires a later version of the interpreter.

Similarly, large (64-bit-addressing) component files are inaccessible to versions of the

interpreter that pre-dated their introduction.

The second item in the right argument of �FCREATE determines the addressing type

of the file.

 'small'�fcreate 1 32 & create small file.
 'large'�fcreate 1 64 & create large file.

If the second item is missing, the file type defaults to 64-bit-addressing.

From Dyalog APL Version 11 onwards, there are two separate versions of programs

for 32-bit and 64-bit machine architectures.

Interoperability is summed up in the following tables. Table rows show the version that

is attempting to access the file or workspace and columns show the version that saved

it:

This version can access files created by this version -
.

The row and column titles show the Dyalog version 10.0, 10.1, etc; (32) and (64)

indicate a version running on a 32-bit or 64-bit machine architecture, respectively.

6 Dyalog APL/W User Guide

Implementation
The following tables document compatibility between different versions of Dyalog

APL. Each row represents a system which is accessing or receiving data, each column

represents a system which has saved (or created, or sent) the data.

In each cell, “Yes” means that all data can be transferred successfully. “-“ means that

data cannot be accessed. “~” followed by one or more letters means that data can be

read, with one or more exceptions:

o Cannot read �ORs. Note that �NULL is represented as a namespace.

t Cannot tie files created on machines with different byte ordering.

r Cannot read a component with different byte ordering.

w Can read from but cannot write to files created on machines with different byte

ordering (attempting to write generates FILE ACCESS ERROR).

u Cannot tie a file with the Unicode property, cannot read components containing

Unicode data. For sockets: Cannot read data in encoding Unicode.

j Cannot tie a file with journaling enabled. Note that no versions prior to Version

12.0 can tie a journaled file.

In general, data is written, saved or transmitted in the format that is native to the writer.

Readers do the work of any necessary translation. The exceptions to this rule at that:

- A 64-bit system writing to a 32-bit file will write components in 32-bit format

- Version 12 and above will write character data in either Unicode or non-Unicode

format, depending on the Unicode bit of the file. 32-bit files are always non-

Unicode.

Workspaces
Workspaces cannot be loaded if saved by “higher” versions.

 10.0 10.1 11.0(32) 11.0(64) 12.0 (32) 12.0 (64)

10.0 Yes - - - - -

10.1 Yes Yes - - - -

11.0 (32) Yes Yes Yes Yes - -

11.0 (64) - Yes Yes Yes - -

12.0 (32) Yes Yes Yes Yes Yes Yes

12.0 (64) - Yes Yes Yes Yes Yes

 Chapter 1: Installation and Configuration 7

Small (32-bit) Component files and External
Variables
Small component files are limited in size to 4GB and are limited to having the same

architecture in all components.

 10.0 10.1 11.0 12.0

10.0 ~t ~t ~ot ~otj

10.1 ~t ~t ~ot ~otj

11.0 ~w ~w ~w ~owj

12.0 ~w ~w ~w ~w

Large (64-bit) Component files
Large component files were introduced in version 10.1, and are the default architecture

used by 12.0. In large component files, each component has its own architecture

information (byte order, 32/64 data size, unicode).

 10.1 11.0 12.0

10.1 ~r - -

11.0 Yes Yes ~ouj

12.0 Yes Yes Yes

Sockets (Type 'APL')
 10.0 10.1 11.0 (32) 11.0 (64) 12.0 (32) 12.0 (64)

10.0 Yes ~o ~o - ~ou -

10.1 Yes Yes ~o - ~ou -

11.0 (32) Yes Yes Yes Yes ~ou ~ou

11.0 (64) Yes Yes Yes Yes ~ou ~ou

12.0 (32) Yes Yes Yes Yes Yes Yes

12.0 (64) Yes Yes Yes Yes Yes Yes

8 Dyalog APL/W User Guide

Auxiliary Processes
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.

In other words, the AP must share the same word-width and byte-ordering as its

interpreter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and

saved.

 Chapter 1: Installation and Configuration 9

The APL Command Line

The command line for Dyalog APL/W is as follows :

dyalog [options] [debug] [file] [param] [param] [param]...

where:

 [options]

 -x No �LX execution on workspace loads.

 -a Start in USER mode.

 -c Signifies a command-line comment. All characters to the

right are ignored.

 [debug]

 -Dc Check workspace integrity after every callback function.

 -Dw Check workspace integrity on return to session input.

-DW Check workspace integrity after every line of APL

(application will run slowly as a result)

 -DK Log session keystrokes in (binary) file APLLOG.

 [file] The name of a Dyalog APL workspace to be loaded. Unless

 specified, the file extension .DWS is assumed.

 [param] A parameter name followed by an equals sign (=) and a value. Note

 that the parameter name may be one of the standard APL parameters

 described below, or a name and value of your own choosing (see

 Object Reference, GetEnvironment method).

Examples:

c:\program files\…\dyalog.exe myapp maxws=64000
c:\program files\…\dyalog.exe session_file=special.dse
c:\program files\…\dyalog.exe myapp aplt=mytrans.dot myparam=42

10 Dyalog APL/W User Guide

APL Exit Codes
When APL or a bound .EXE terminates, it returns an exit code to the calling

environment. If APL is started from a desktop icon, the return code is ignored.

However, if APL is started from a script (UNIX) or a command processor, the exit

code is available and may be used to determine whether or not to continue with other

processing tasks. The return codes are:

0 successful �OFF,)OFF,)CONTINUE, graphical exit from GUI

1 APL never got started. This will occur if there was a failure to read a translate

file, there is insufficient memory, or a critical parameter is incorrectly specified

or missing.

2 APL was terminated by SIGHUP or SIGTERM (UNIX) or in response to a

QUIT WINDOWS request. APL has done a clean exit.

3 APL issued a syserror

Note that if APL terminates with a core dump, SIGSEGV etc (UNIX), the return code

is determined by the Operating System.

It is also possible for an application to return a custom exit code as the optional

argument to �OFF.

Configuration Parameters

Introduction
Dyalog APL/W is customised using a set of configuration parameters which are

defined in a registry folder.

In addition, parameters may be specified as environment variables or may be specified

on the APL command line.

Furthermore, you are not limited to the set of parameters employed by APL itself as

you may add parameters of your own choosing.

 Chapter 1: Installation and Configuration 11

Setting Parameter Values
You can change the parameters in 4 ways:

1. Using the Configuration dialog box that is obtained by selecting

Configure from the Options menu on the Dyalog APL/W session. See

Chapter 2 for details.

2. By directly editing the Windows Registry using REGEDIT.EXE or

REGEDIT32.EXE.

3. By defining the parameters as DOS environment variables.

4. By defining the parameters on the APL command line.

This scheme provides a great deal of flexibility, and a system whereby you can

override one setting with another. For example, you can define your normal workspace

size (maxws) in your .INI file or Registry, but override it with a new value specified on

the APL command line. The way this is done is described in the following section.

How APL Obtains Parameter Values

When Dyalog APL/W requires the value of a parameter, it uses the following rules.

1. If the parameter is defined on the APL command line, this value is used.

2. Otherwise, APL looks for an environment variable of the same name and uses this

value.

3. Otherwise, if the parameter in question is inifile, the default value of

Software\Dyalog\Dyalog APL/W 12.0 Unicode (Unicode Edition) or

of Software\Dyalog\Dyalog APL/W 12.0 Unicode (Classic Edition)

is assumed.

4. Otherwise, if the parameter in question is dyalog, the name of the directory from

which the Dyalog APL progam was loaded is assumed.

5. The value of any other parameter is obtained from the registry folder defined by the

value of inifile.

Note that the value of a parameter obtained by the GetEnvironment method (see Object

Reference) uses exactly the same set of rules.

The following section details those parameters that are implemented by Registry

Values in the top-level folder identified by inifile. Values that are implemented in sub-

folders are mainly internal and are not described in detail here. However, any Value

that is maintained via a configuration dialog box will be named and described in the

documentation for that dialog box in Chapter 2.

12 Dyalog APL/W User Guide

AplCoreName

This parameter specifies the directory and name of the file in which the aplcore should

be saved. The optional wild-card character (*) is replaced by a unique string when the

file is written. For example:

APLCORENAME=C:\mycores\aplcore*.dat

aplfscb

This parameter specifies the location of the File System Control Block (FSCB) and is

applicable only if File_Control is set to 1. The FSCB is a file which is used to control

and synchronise access to shared component files and external variables. See Chapter 3

for further details.

aplk Classic Edition Only

This parameter specifies the name of your Input Translate Table, which defines your

keyboard layout. The keyboard combo in the Configure dialog box displays all the files

with the .DIN extension in the APLKEYS sub-directory. You may choose any one of

the supplied tables, and you may add your own to the directory. Note that the

FILE.DIN table is intended for input from file, and should not normally be chosen as a

keyboard table. Classic Edition only

aplkeys Classic Edition Only

This parameter specifies a search path for the Input Translate Table and is useful for

configuring a run-time application. It consists of a string of directories separated by the

semicolon (;) character. Its default value is the APLKEYS sub-directory of the

directory in which Dyalog APL/W is installed (defined by dyalog)

aplnid

This parameter specifies the user number that is used by the component file system to

control file sharing and security. If you wish to share component files and/or external

variables in a network, and you choose to use other than the default file control

mechanism (File_Control=2, see below), it is essential that each user has a unique

aplnid parameter. It may be any integer in the range 0 to 65535. Note that an aplnid

value of 0 causes the user to bypass APL’s access control matrix mechanism.

 Chapter 1: Installation and Configuration 13

aplt

This parameter specifies the name of the Output Translate Table. The default is

WIN.DOT and there is rarely a need to alter it.

apltrans

This parameter specifies a search path for the Output Translate Table and is useful for

configuring a run-time application. It consists of a string of directories separated by the

semicolon (;) character. Its default value is the sub-directory APLTRANS in the

directory in which Dyalog APL/W is installed.

auto_pw

This parameter specifies whether or not the value of �PW is derived automatically from

the current width of the Session Window. If auto_pw is 1, the value of �PW changes

whenever the Session Window is resized and reflects the number of characters that can

be displayed on a single line.. If auto_pw is 0 (the default) �PW is independent of the

Session Window size.

AutoFormat

This parameter specifies whether or not you want automatic formatting of Control

Structures in functions. The default value is 0. If this parameter is set to 1, formatting

is done automatically for you when a function is opened for editing or converted to text

by �CR, �NR and �VR. Automatic formatting first discards all leading spaces in the

function body. It then prefixes all lines with a single space except those beginning with

a label or a comment symbol (this has the effect of making labels and comments stand

out). The third step is to indent Control Structures. The size of the indent depends upon

the TabStops parameter.

AutoIndent

This parameter specifies whether or not you want semi-automatic indenting during

editing. The default value is 1. This means that when you enter a new line in a

function, it is automatically indented by the same amount as the previous line. This

option simplifies the entry of indented Control Structures.

14 Dyalog APL/W User Guide

ClassicMode

This parameter specifies whether or not the Session operates in Dyalog Classic mode.

The default is 0. If this parameter is set to 1, the Editor and Tracer behave in a manner

that is consistent with previous versions of Dyalog APL.

confirm_abort

This parameter specifies whether or not you will be prompted for confirmation when

you attempt to abort an edit session after making changes to the object being edited. Its

value is either 1 (confirmation is required) or 0. The default is 0.

confirm_close

This parameter specifies whether or not you will be prompted for confirmation when

you close an edit window after making changes to the object being edited. Its value is

either 1 (confirmation is required) or 0. The default is 0.

confirm_fix

This parameter specifies whether or not you will be prompted for confirmation when

you attempt to fix an object in the workspace after making changes in the editor. Its

value is either 1 (confirmation is required) or 0. The default is 0.

confirm_session_delete

This parameter specifies whether or not you will be prompted for confirmation when

you attempt to delete lines from the Session Log. Its value is either 1 (confirmation is

required) or 0. The default is 1.

CreateAplCoreOnSyserror

This parameter specifies whether or not an aplcore file is generated when APL exits

with a system error.

 Chapter 1: Installation and Configuration 15

default_div

This parameter specifies the value of �DIV in a clear workspace. Its default value is 0.

DefaultHelpCollection

Dyalog attempts to use the Microsoft Document Explorer and online help, for example

from Visual Studio (if installed), to display help for external objects, such as .Net

Types. In most cases the default settings of "ms-help://ms.mscc.v80" will be sufficient.

On some configurations it may be necessary to change this.

default_io

This parameter specifies the value of �IO in a clear workspace. Its default value is 1.

default_ml

This parameter specifies the value of �ML in a clear workspace. Its default value is 0.

default_pp

This parameter specifies the value of �PP in a clear workspace. Its default value is 10.

default_pw

This parameter specifies the value of �PW in a clear workspace. Its default value is 76.

Note that �PW is a property of the Session and the value of default_pw is overridden

when a Session file is loaded.

default_rl

This parameter specifies the value of �RL in a clear workspace. Its default value is

16807.

16 Dyalog APL/W User Guide

default_rtl

This parameter specifies the value of �RTL in a clear workspace. Its default value is 0.

default_wx

This parameter specifies the value of �WX in a clear workspace. This in turn determines

whether or not the names of properties, methods and events of GUI objects are

exposed. If set (�WX is 1), you may query/set properties and invoke methods directly as

if they were variables and functions respectively. As a consequence, these names may

not be used for global variables in GUI objects.

DockableEditWindows

This parameter specifies whether or not individual edit windows can be undocked from

(and docked back into) the (MDI) Editor window. Its default value is 0. This parameter

does not apply if ClassicMode is set to 1.

DoubleClickEdit

This parameter specifies whether or not double-clicking over a name invokes the

editor. Its default is 1. If DoubleClickEdit is set to 0, double-clicking selects a word

and triple-clicking selects the entire line.

dyalog

This parameter specifies the name of the directory in which Dyalog APL/W is

installed.

DyalogEmailAddress

This parameter specifies the contact email address for Dyalog Limited.

 Chapter 1: Installation and Configuration 17

DyalogHelpDir

This parameter specifies the full pathname of the directory that contains the Dyalog

APL help file (dyalog.chm).

DyalogInstallDir

This parameter specifies the full pathname of the directory in which Dyalog APL is

installed.

DyalogWebSite

This parameter specifies the URL for the Dyalog web site.

edit_cols, edit_rows

These parameters specify the initial size of an edit window in character units.

edit_first_x, edit_first_y

These parameters specify the initial position on the screen of the first edit window in

character units. Subsequent edit windows will be staggered. These parameters only

apply if ClassicMode is 1.

edit_offset_x, edit_offset_y

These parameters specify the amount by which an edit window is staggered from the

previous one.

ErrorOnExternalException

This is a Boolean parameter that specifies the behaviour when a System Exception

occurs in an external DLL. If this parameter is set to 1, and an exception occurs in a

call on an external DLL. APL generates an EXTERNAL DLL EXCEPTION error (91),

instead of terminating with a System Error. This error may be trapped.

18 Dyalog APL/W User Guide

EditorState

This is an internal parameter that remembers the state of the last edit window (normal

or maximised). This is used to create the next edit window in the appropriate state.

File_Control

This parameter specifies the Component File System Control mechanism. It is an

integer with the value 0, 1 or 2:

0. Access to Component Files is controlled in memory. This is the fastest

control mechanism but is applicable only to a stand-alone situation. If you

are sharing component files with other users or between two APL

sessions, you must not use this option.

1. Access to Component Files is controlled by a File System Control Block.

This is a separate file shared by all APL users that records the current state

of all file ties and locks. This mechanism is provided primarily for

compatibility with previous versions of Dyalog APL/W.

2. Access to Component Files is controlled by standard Operating System

facilities. This is the preferred control mechanism for shared component

files and is the default.

greet_bitmap

This parameter specifies the filename of a bitmap to be displayed during initialisation

of the Dyalog APL application. It is used typically to display a product logo from a

runtime application. The bitmap will remain until either an error occurs, or it is

removed using the GreetBitmap method of the Root object.

 greet_bitmap=c:\myapp\logo.bmp

history_size

This parameter specifies the size of the buffer used to store previously entered (input)

lines in the Session.

 Chapter 1: Installation and Configuration 19

IndependentTrace

This parameter specifies whether or not the Trace windows are children of the Session

window. The default is 0 (Trace windows are children of the Session). This applies

only if ClassicMode is 1.

inifile

This parameter specifies the name of the Windows Registry folder that contains the

configuration parameters described in this section. For example,

 INIFILE=Software\Dyalog\mysettings

If the parameter is not defined, inifile defaults to the current directory.

InitialKeyboardLayout Unicode Edition Only

This parameter specifies the name of the keyboard to be selected on startup. When you

start an APL session, this layout will automatically be selected as the current keyboard

layout if the value of InitialKeyboardLayoutInUse is 1.

InitialKeyboardLayoutInUse Unicode Edition Only

This Boolean parameter specifies whether or not the keyboard specified by

InitialKeyboardLayout is selected as the current keyboard layout when you start an

APL session.

input_size

This parameter specifies the size of the buffer used to store marked lines (lines

awaiting execution) in the Session.

20 Dyalog APL/W User Guide

lines_on_functions

This parameter specifies whether or not line numbers are displayed in edit and trace

windows. It is either 0 (the default) or 1.

Note that this parameter determines your overall preference for line numbering, and

this setting persists between APL sessions. You can however still toggle line

numbering on and off dynamically as required by clicking Line Numbers in the

Options menu on the Session Window. These temporary settings are not saved between

APL sessions.

localdyalogdir

This parameter specifies the name of the directory in which Dyalog APL/W is installed

on the client, in a client/server installation

.

log_file

This parameter specifies the full pathname of the Session log file.

log_file_inuse

This parameter specifies whether or not the Session log is saved in a session log file.

log_size

This parameter specifies the size of the Session log buffer in Kb.

 Chapter 1: Installation and Configuration 21

mapchars Classic Edition Only

In previous versions of Dyalog APL, certain pairs of characters in �AV were mapped to

a single font glyph through the output translate table. For example, the ASCII pipe ¦

and the APL style | were both mapped to the APL style |. From Version 7.0 onwards,

it has been a requirement that the mapping between �AV and the font is strictly one-to-

one (this is a consequence of the new native file system). Originally, the mapping of

the ASCII pipe and the APL style, the APL and ASCII quotes, and the ASCII ^ and the

APL : were hard-coded. The mapping is defined by the mapchars parameter.

mapchars is a string containing pairs of hexadecimal values which refer to 0-origin

indices in �AV. The first character in each pair is mapped to the second on output. The

default value of mapchars is DB0DEBA7EEC00BE0 which defines the following

mappings.

From To

Hex Decimal Symbol Hex Decimal Symbol

DB 219 ‘ 0D 13 '

EB 235 ^ A7 167 ^
EE 238 ⌷ C0 192 |
0B 11 . E0 224 .

To clear all mappings, set MAPCHARS=0000

22 Dyalog APL/W User Guide

maxws

This parameter determines your workspace size in kilobytes and is the amount of

Windows memory allocated to the workspace at APL start-up. The default value is

16384 (16 Mb). If you want a larger (or smaller) workspace you must change this

value. For example, to get a 64 MB workspace :

 MAXWS=65536

Dyalog APL places no implicit restriction on workspace size, and the virtual memory

capability of MS-Windows allows you to access more memory than you have

physically installed. However if you use a workspace that greatly exceeds your

physical memory you will encounter excessive paging and your APL programs will

run slowly.

Note that the memory used for the workspace must be contiguous memory, and, under

Windows, this is is typically limited to a maximum of 1.6GB. This is a Windows

restriction, and not one that is imposed by Dyalog APL.

PassExceptionsToOpSys

This is a Boolean parameter that specifies the default state of the Pass Exception check

box in the System Error dialog box.

pfkey_size

This parameter specifies the size of the buffer that is used to store programmable

function key definitions (�PFKEY).

ProgramFolder

This parameter specifies the name of the folder in which the Dyalog APL program

icons are installed..

 Chapter 1: Installation and Configuration 23

PropertyExposeRoot

This parameter specifies whether or the names of properties, methods and events of the

Root object are exposed. If set, you may query/set the properties of Root and invoke

the Root methods directly as if they were variables and functions respectively. As a

consequence, these names may not be used for global variables in your workspace.

PropertyExposeSE

This parameter specifies whether or the names of properties, methods and events of the

Session object are exposed. If set, you may query/set the properties of �SE and invoke

�SE methods directly as if they were variables and functions respectively. As a

consequence, these names may not be used for global variables in the �SE namespace.

qcmd_timeout

This parameter specifies the length of time in milliseconds that APL will wait for the

execution of a DOS command to start. Its default value is 5000 milliseconds.

RunAsService

When RunAsService is set to 1 (the default is 0) Dyalog APL will not prompt for

confirmation when the user logs off, and the interpreter will continue to run across the

logoff logon process

SaveContinueOnExit

Specifies whether or not your current workspace is saved as CONTINUE.DWS before

APL terminates.

SaveLogOnExit

Specifies whether or not your Session log is saved before APL terminates.

24 Dyalog APL/W User Guide

SaveSessionOnExit

Specifies whether or not your current Session is saved in your Session file before APL

terminates.

Serial

Specifies your Dyalog APL/W Serial Number.

session_file

This parameter specifies the name of the file from which the APL session (�SE) is to

be loaded when APL starts. If not specified, a .DSE extension is assumed. This session

file contains the �SE object that was last saved in it. This object defines the appearance

and behaviour of the Session menu bar, tool bar(s) and status bar, together with any

functions and variables stored in the �SE namespace.

ShowStatusOnError

Specifies whether or not the Status window is automatically displayed (if required)

when APL attempts to write output to it.

SingleTrace

Specifies whether there is a single Trace window, or one Trace window per function.

This applies only if ClassicMode is 1.

StatusOnEdit

Specifies whether or not a status bar is displayed at the bottom of an Edit window.

 Chapter 1: Installation and Configuration 25

sm_cols, sm_rows

These parameters specify the size of the window used to display �SM when it is used

stand-alone. They are not used if the window is specified using the SM object.

TabStops

This parameter specifies the number of spaces inserted by pressing the Tab key in the

editor. Its default value is 4.

trace_cols, trace_rows

These parameters specify the initial size of a trace window in character units.

trace_first_x, trace_first_y

These parameters specify the initial position on the screen of the first trace window in

character units. Subsequent trace windows will be staggered. This applies only if

ClassicMode is 1.

trace_offset_x, trace_offset_y

These parameters specify the amount by which a trace window is staggered from the

previous one. These apply only if ClassicMode is 1 and SingleTrace is 0.

Trace_level_warn

This parameter specifies the maximum number of Trace windows that will be

displayed when an error occurs and Trace_on_error is set to 1. If there are a large

number of functions in the state indicator , the display of their Trace windows may take

several seconds. This parameter allows you to restrict the potential delay to a

reasonable value and its default is 16. If the number of Trace windows would exceed

this number, the system instead displays a warning message box. This parameter is

ignored if you invoke the Tracer explicitly. This parameter applies only if

ClassicMode is 1 and SingleTrace is 0.

26 Dyalog APL/W User Guide

Trace_on_error

This parameter is either 0 (the default) or 1. If set to 1, Trace_on_error specifies that

the Tracer is automatically deployed when execution of a defined function halts with

an error. A stack of Trace windows is immediately displayed, with the top Trace

window receiving the input focus.

TraceStopMonitor

This parameter specifies which of the �TRACE (1), �STOP (2) and �MONITOR (4)

columns are displayed in Trace and Edit windows. Its value is the sum of the

corresponding values.

UnicodeToClipboard Classic Edition

This parameter specifies whether or not text that is transferred to and from the

Windows clipboard is treated as Unicode text. If UnicodeToClipboard is 0 (the

default), the symbols in �AV are mapped to ASCII text (0-255). In particular, the APL

symbols are mapped to ASCII symbols according to their positions in the Dyalog APL

font. If UnicodeToClipboard is 1, the symbols in �AV are mapped to Unicode text and

the APL symbols are mapped to their genuine Unicode equivalent values.

wspath

This parameter defines the workspace path. This is a list of directories that are searched

in the order specified when you)LOAD or)COPY a workspace and when you start an

Auxiliary Processor. The default is .\;WS;.\XFLIB. The following example causes

)COPY,)LOAD and)LIB to look first in the current directory, then in D:\MYWS, and

then in the supplied workspace directory.

wspath=.;D:\MYWS;C:\Program Files\Dyalog\Dyalog APL 11.0\W
S

XPLookAndFeel

This parameter is not used directly. See page 130.

 Chapter 1: Installation and Configuration 27

XPLookAndFeelDocker

This parameter specifies whether or not the title bars in docked windows honour XP

Look and Feel, if this is enabled at the Windows level. If unspecified, the default is 0.

yy_window

This parameter defines how Dyalog APL is to interpret a 2-digit year number. Dyalog

APL is millennium-compliant, However it is possible that the applications you have

written are not.

This is because Dyalog allows a choice of input date formats for �SM and GUI edit

fields. If you have chosen a 2-digit year format such as MM/DD/YY, then an input of

02/01/00 will by default be interpreted as 1
st
 February 1900 - not 1

st
 February 2000.

If your application uses a 4-digit year format such as YYYY-MM-DD, the problem

will not arise.

You can use the yy_window parameter to cause your application to interpret 2-digit

dates in as required without changing any APL code.

Sliding versus Fixed Window

Two schemes are in common use within the industry: Sliding or Fixed date windows.

Use a Fixed window if there is a specific year, for example 1970, before which, dates

are meaningless to your application. Note that with a fixed window, this date (say

1970) will still be the limit if your application is running in a hundred years time.

Use a Sliding window if there is a time period, for example 30 years, before which

dates are considered too old for your application. With a sliding window, you will

always be able to enter dates up to (say) 30 years old, but after a while, specific years

in the past (for example 1970) will become inaccessible.

Setting a Fixed Window

To make a fixed window, set environment variable yy_window to the 4-DIGIT year

which is the earliest acceptable date. For example:

YY_WINDOW=1970

This will cause the interpreter to convert any 2-digit input date into a year in the range

1970, 1971, ... 2069

28 Dyalog APL/W User Guide

Setting a Sliding Window

To make a sliding window, set environment variable yy_window to the 1- or 2-DIGIT

year which determines the oldest acceptable date. This will typically be negative.

YY_WINDOW=-30

Conversion of dates now depends on the current year:

If the current year is 1999, the earliest accepted date is 1999-30 = 1969.

This will cause the interpreter to convert any 2-digit input date into a year in the range

1969, 1970, ... 2068.

However if your application is still running in the year 2010, the earliest accepted date

then will be 2010-30 = 1980. So in the year 2010, a 2-digit year will be interpreted in

the range 1980, 1981, ... 2079.

Advanced Settings

You can further restrict date windows by setting an upper as well as lower year limit.

YY_WINDOW=1970,1999

This causes 2-digit years to be converted only into the range 1970, 1971, ... 1999. Any

2-digit year (for example, 54) not convertible to a year in this range will cause a

DOMAIN ERROR.

The sliding window equivalent is:

YY_WINDOW=-10,10

This would establish a valid date window, ten years either side of the current year. For

example, if the current year is 1998, the valid range would be (1998-10) – (1998+10),

in other words: 1988, 1989, → 2008.

One way of looking at the yy_window variable is that it specifies a 2-element vector. If

you supply only the first element, the second one defaults to the first element + 99.

Note that the system uses only the number of digits in the year specification to

determine whether it refers to a fixed (4-digits) or sliding (1-, or 2-digits) window. In

fact you can have a fixed lower limit and a sliding upper limit, or vice versa.

YY_WINDOW=1990,10

 Chapter 1: Installation and Configuration 29

Allows dates as early as 1990, but not more than 10 years hence.

YY_WINDOW=0,1999

Allows dates from the current year to the end of the century.

If the second date is before, or more that 99 years after the first date, then any date

conversion will result in a DOMAIN ERROR. This might be useful in an application

where the end-user has control over the input date format and you want to disallow any

2-digit date input.

YY_WINDOW=1,0

30 Dyalog APL/W User Guide

Registry Sub-Folders
A large amount of configuration information is maintained in the Windows Registry in

sub-folders of the main folder identified by inifile.

Many of these values are dynamic, for example the position of the various Session

windows, is maintained in a Registry sub-folder so that their appearance is maintained

from one invocation of APL to the next. These type of Registry values are considered

to be internal and are therefor not described herein.

However, and Registry Value that is maintained via a configuration dialog box will be

named and described in the documentation for that dialog box in Chapter 2.

AutoComplete
This contains registry entries that describe your personal AutoComplete options. See

Auto Complete Tab on page 146.

Charts
This contains entries that control the way charts are produced and displayed when you

click one of the chart buttons. See Object Operations on page 122.

Colours
This contains entries that describe the colour schemes you have and your personal

preferences. See Colour Selection Dialog on page 152.

Event Viewer
This contains entries that describe your settings for the Event Viewer. See page 237.

Explorer
This contains entries that describe your settings for the Workspace Explorer. See page

163.

files
This contains the size of your recently used file list (see page 129) and the list of your

most recently loaded workspaces.

 Chapter 1: Installation and Configuration 31

KeyboardShortcuts
This contains the definitions of your Keyboard Shortcuts (Unicode Edition only) . See

page 134.

LanguageBar
This contains the definitions of the symbols, tips, and help for the symbols in the

LanguageBar.

Printing
This contains the entries for your Printer Setup options. See page 155.

SALT
This contains entries for SALT. See page 148.

Search
This contains dynamic entries for the Find Objects Tool. See page 193.

Threads
This contains entries to remember your preferences for Threads. See The Threads

Menu on page 115.

ValueTips
This contains entries for your Value Tips preferences. See page 129.

WindowRects
This contains entries to maintain the postion of various Session tool windows so that

they remain consistent between successive invocations of APL.

32 Dyalog APL/W User Guide

Workspace Management

Workspace Size and Compaction

The maximum amount of memory allocated to a Dyalog APL workspace is defined by

the maxws parameter.

Upon)LOAD and)CLEAR, APL allocates an amount of memory corresponding to the

size of the workspace being loaded (which is zero for a clear ws) plus the workspace

delta.

The workspace delta is 1/16
th

 of maxws, except if there is less than 1/16
th

 of maxws in

use, delta is 1/64
th

 of maxws. This may also be expressed as follows:

 delta>maxws{BΑ÷E(Ω>Α÷16)I64 16}ws

where maxws is the value of the maxws parameter and ws is the currently allocated

amount of workspace. If maxws is 16384KB, the workspace delta is either 256KB or

1024 KB, and when you start with a clear ws the workspace occupies 256KB.

When you erase objects or release symbols, areas of memory become free. APL

manages these free areas, and tries to reuse them for new objects. If an operation

requires a contiguous amount of workspace larger than any of the available free areas,

APL reorganises the workspace and amalgamates all the free areas into one contiguous

block as follows:

1. Any un-referenced memory is discarded. This process, known as garbage

collection, is required because whole cycles of refs can become un-referenced.

2. Numeric arrays are demoted to their tightest form. For example, a simple numeric

array that happens to contain only values 0 or 1, is demoted or squeezed to have a

�DR type of 11 (Boolean).

3. All remaining used memory blocks are copied to the low-address end of the

workspace, leaving a single free block at the high-address end. This process is

known as compaction.

4. In addition to any extra memory required to satisfy the original request, an

additional amount of memory, equal to the workspace delta, is allocated. This will

always cause the process size to increase (up to the maxws limit) but means that

an application will typically achieve its working process size with at most 4+15

memory reorganisations.

5. However, if after compaction, the amount of used workspace is less than 1/16 of

the Maximum workspace size (MAXWS), the amount reserved for working

memory is reduced to 1/64th MAXWS. This means that workspaces that are

operating within 1/16th of MAXWS will be more frugal with memory

 Chapter 1: Installation and Configuration 33

Note that if you try to create an object which is larger than free space, APL reports WS
FULL.

The following system function and commands force a workspace reorganisation as

described above :

 �WA,)RESET,)SAVE,)LOAD,)CLEAR

However, in contrast to the above, any spare workspace above the workspace delta

is returned to the Operating System. On a Windows system, you can see the process

size changing by using Task Manager.

The system function �WA may therefore be used judiciously (workspace reorganisation

takes time) to reduce the process size after a particularly memory-hungry operation.

Note that in Dyalog APL, the SYMBOL TABLE is entirely dynamic and grows and

shrinks in size automatically. There is no SYMBOL TABLE FULL condition.

Interface with Windows

Windows Command Processor commands may be executed directly from APL using

the system command)CMD or the system function �CMD. This system function is also

used to start other Windows programs. For further details, see the appropriate sections

in Language Reference.

Auxiliary Processors

Introduction
Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users

with additional facilities. They run under the control of Dyalog APL.

Typically, APs are used where speed of execution is critical, for utility libraries, or as

interfaces to other products. APs may be written in any compiled language, although C

is preferred and is directly supported.

34 Dyalog APL/W User Guide

Starting an AP
An Auxiliary Processor is invoked using the dyadic form of �CMD. The left argument

to �CMD is the name of the program to be executed; the value of the wspath parameter

is used to find the named file. In Dyalog APL/W, the right argument to �CMD is

ignored.

 'xutils' �CMD ''

On locating the specified program, Dyalog APL starts the AP and initialises a memory

segment for communication between the workspace and the AP. This communication

segment allows data to be passed from the workspace to the other process, and for

results to be passed back. The AP then sends APL some information about its external

functions (names, code numbers and calling syntax), which APL enters in the symbol

table. APL then continues processing while the AP waits for instructions.

Using the AP
Once established, an AP is used by making a reference to one of its external functions.

An external function behaves as if it were a locked defined function, but it is in effect

an entry point to the AP. When an external function is referenced, APL transmits a

code number to the AP, followed by any arguments. The AP then takes over and

performs the desired processing before posting the result back.

Terminating the AP
An AP is terminated when all of its external functions are expunged from the active

workspace. This could occur with the use of)CLEAR,)LOAD,)ERASE, �EX,
)OFF,)CONTINUE or �OFF.

 Chapter 1: Installation and Configuration 35

Example:
Start an Auxiliary Processor called EXAMPLE. This fixes two external functions

called DATE_TO_IDN and IDN_TO_DATE which deal with the conversion of

International Day Numbers to Julian Dates.

.------------------------.
APL PROCESS
)CLEAR
clear ws
'EXAMPLE' �CMD ''
)FNS
DATE_TO_IDN IDN_TO_DATE
IDN_TO_DATE 19407
wait ...
18 Feb 53
)CLEAR
clear ws
.------------------------.

36 Dyalog APL/W User Guide

Access Control for External Variables

External variables may be EXCLUSIVE or SHARED. An exclusive variable can only

be accessed by the owner of the file. If you are on a Local Area Network (LAN) a

shared external variable may be accessed (concurrently) by other users. The exclusive

or shared status of an external variable is set by the XVAR function in the UTIL

workspace.

Access to an external variable is faster if it has exclusive status than if it is shared. This

is because if several users are accessing the file data must always be read and written

directly to disk. If it has exclusive status, the system uses buffering and avoids disk

accesses where possible.

 Chapter 1: Installation and Configuration 37

ODBC Configuration (SQAPL.INI)

SQAPL uses default parameters which are adequate for most purposes. They are:

 MaxRows=50
 MaxCursors=25
 DefaultType=<C80

Should you wish to change any of these parameters, you must create an SQAPL.INI

file. This file must be located in the directory specified by your sqaplpath parameter

which is defined in the Software\Insight\SQApl section in the Windows Registry. This

is inserted during installation and is normally the directory in which Dyalog APL/W is

installed.

SQAPL.INI should contain a section for each of the connection service you wish to

use, corresponding to the sections in your ODBC.INI.

Example:

 [dBase_sdk20]
 DatabaseType=ODBC
 DefaultType=<C80
 MaxCursors=30
 MaxRows=100

The section name must be the same as the corresponding section name in the ODBC

configuration file ODBC.INI. The DatabaseType parameter should always have the

value ODBC, other versions of SQAPL also support SQLNK for a SequeLink service.

DefaultType specifies the default data type to be used, and we recommend the value

<C80, to make the default an 80-element character bind variable (see the section on

Bind Variable Data Types for details). It is recommended that you use the defaults for

the two parameters mentioned above.

MaxCursors specifies the maximum number of cursors which may be opened for this

driver. MaxRows gives the default block size for Fetch operations with this driver. The

APL programmer can set MaxRows for each cursor at run-time, but the value in

SQAPL.INI file is used as the default.

38 Dyalog APL/W User Guide

Creating Executables
Dyalog APL provides the facility to package an APL workspace as a Windows

executable (EXE). This may be done by selecting Export … from the File menu of the

APL Session window.

The system provides the following options:

• You may bind your EXE as a Dyalog APL run-time application, or as a

Dyalog APL developer application. The second option will allow you to

debug the application should it encounter an APL error.

• You may bind your EXE as a console-mode application. A console

application does not have a graphical user interface, but runs as a background

task using files or TCP/IP to perform input and output.

• You may specify whether or not your .EXE will honour XP Look and Feel if

this is enabled at the Windows level.

A Dyalog APL application packaged as a EXE file must be accompanied by the

Dyalog APL Dynamic Link Library (dyalog120.dll or dyalog120rt.dll)

which should be installed in the same directory (as the EXE) or in the Windows

System directory.

The following example illustrates how you can package the supplied workspace

calc.dws as an executable. Before making the executable, it is essential to set up the

latent expression to run the program using �LX as shown. Notice that in this case it is

not necessary to execute �OFF; the calc.exe program will terminate normally when

the user closes the calculator window and the system returns to Session input.

 Chapter 1: Installation and Configuration 39

Then, when you select Export… from the File menu, the following dialog box is

displayed.

40 Dyalog APL/W User Guide

In the example shown, the program is to be saved in ws, the (supplied workspaces)

directory from which the workspace was loaded (the default).

The Runtime application checkbox is checked, indicating that calc.exe is to be bound

to the run-time dynamic link library, dyalog120rt.dll.

As this is a GUI application, the Console application checkbox is left unset.

The Enable XP Look and Feel checkbox has been set so that calc.exe will honour

XP Look and Feel if it is enabled at the Windows level.

Note that if you enter the name of a file containing an icon (use the Browse button to

browse for it) that icon will be bound with your executable and be use instead of the

standard Dyalog APL icon.

 Chapter 1: Installation and Configuration 41

The Command Line box allows you to enter parameters and values that are to be

passed to your executable when it is invoked.

On clicking Save, the following message box is displayed to confirm success.

Version Information
You may embed version information into your .exe by clicking the Version button and

then completing the Version Information dialog box that is illustrated below.

42 Dyalog APL/W User Guide

Run-Time Applications and Components
Using Dyalog APL you may create different types of run-time applications and

components. Note that the distribution of run-time applications and components

requires a Dyalog APL Run-Time Agreement. Please contact Dyalog or your

distributor, or see the Dyalog web page for more information.

The following table shows a list of distributable components for the two Editions.

These are referred to in the remainder of this Chapter by the name shown in the first

column of the table. It is essential that you distribute the components that are

appropriate for the Edition you are using.

Name Folder File Name

Unicode Edition

Run-Time EXE Dyalog APL 12.0 Unicode dyalogrt.exe

Run-Time DLL Dyalog APL 12.0 Unicode\bin dyalog120rt_unicode.dll

Bridge DLL Dyalog APL 12.0\bin bridge120_unicode.dll

DYALOG32 Dyalog APL 12.0 Unicode\bin dyalog32.dll

DOS_32 Dyalog APL 12.0 Unicode dos_32.dll

Classic Edition

Run-Time EXE Dyalog APL 12.0 Classic dyalogrt.exe

Run-Time DLL Dyalog APL 12.0 Classic\bin dyalog120rt.dll

Bridge dll Dyalog APL 12.0\bin bridge120.dll

DYALOG32 Dyalog APL 12.0 Classic\bin dyalog32.dll

DOS_32 Dyalog APL 12.0 Classic dos_32.dll

Both Editions

DyalogNet

DLL

Dyalog APL 12.0\bin dyalognet.dll

 Chapter 1: Installation and Configuration 43

Bound run-time
This is the simplest type of run-time to install. Using the File/Export menu item on the

Session window, you can create a standard Windows executable program file (EXE)

which contains your workspace bound to the Run-Time DLL. To distribute your

application, you need to supply and install:

1. Your bound executable (EXE)

2. The Run-Time DLL

3. whatever additional files that may be required by your application

The command-line for your application should simply invoke your EXE, with

whatever start-up parameters it may require. Note that your application icon and any

start-up parameters for the Run-Time DLL are specified and bound with the EXE when

you make it.

If your application uses any component of the Microsoft .Net Framework, you must

also distribute the Bridge DLL and DyalogNet DLL which must both be installed in the

global assembly cache (GAC) using the gacutil.exe utility program. In addition,

the Bridge DLL must either be on the system path or placed in the same directory as

your EXE.

Workspace based run-time
A workspace based run-time application consists of the Dyalog APL Run-Time

Program (Run-Time EXE) and a separate workspace. To distribute your application,

you need to supply and install:

1. Your workspace

2. The Run-Time EXE

3. whatever additional files that may be required by your application

The command-line for your application invokes the Run-Time EXE, passing it start-up

parameters required for the Run-Time EXE itself (such as MAXWS) and any start-up

parameters that may be required by your application. You will need to associate your

own icon with your application during its installation.

If your application uses any component of the Microsoft .Net Framework, you must

also distribute the Bridge DLL and DyalogNet DLL which must both be installed in the

global assembly cache (GAC) using the gacutil.exe utility program. In addition,

the Bridge DLL must either be on the system path or placed in the same directory as

your EXE.

44 Dyalog APL/W User Guide

Out-of-process COM Server
To make an out-of-process COM Server, you must:

1. Establish one or more OLEServer namespaces in your workspace, populated

with functions and variables that you wish to export as methods, properties

and events.

2. Use the File/Export … menu item on the Session window to register the COM

Server on your computer so that it is ready for use.

The command-line for your COM Server invokes the Run-Time EXE, passing it start-

up parameters required for the Run-Time EXE itself (such as MAXWS) and any start-

up parameters that may be required by your application.

To distribute an out-of-process COM Server, you need to supply and install the

following files:

1. Your workspace

2. The associated Type Library (.tlb) file (created by File/Export)

3. The Run-Time EXE

4. whatever additional files that may be required by your application

To install an out-of-process COM Server you must set up the appropriate Windows

registry entries. See Interface Guide for details.

In-process COM Server
To make an in-process COM Server, you must:

1. Establish one or more OLEServer namespaces in your workspace, populated

with functions and variables that you wish to export as methods, properties

and events.

2. Use the File/Export … menu item on the Session window to create an in-

process COM Server (DLL) which contains your workspace bound to the

Run-Time DLL. This operation also registers the COM Server on your

computer so that it is ready for use.

To distribute your component, you need to supply and install

1. Your COM Server file (DLL)

2. The Run-Time DLL

3. Whatever additional files that may be required by your COM Server.

Note that you must register your COM Server on the target computer using the

regsvr32.exe utility.

 Chapter 1: Installation and Configuration 45

ActiveX Control
To make an ActiveX Control, you must:

1. Establish an ActiveXControl namespaces in your workspace, populated with

functions and variables that you wish to export as methods, properties and

events.

2. Use the File/Export → menu item on the Session window to create an

ActiveX Control file (OCX) which contains your workspace bound to the

Dyalog APL Run-Time Dynamic Link Library (dyalog120rt.dll). This

operation also registers the ActiveX Control on your computer so that it is

ready for use.

To distribute your component, you need to supply and install

1. Your ActiveX Control file (OCX)

2. The Run-Time DLL

3. Whatever additional files that may be required by your ActiveX Control.

Note that you must register your ActiveX Control on the target computer using the

regsvr32.exe utility.

Microsoft .Net Assembly
A Microsoft .Net Assembly contains one or more .Net Classes. To make a Microsoft

.Net Assembly, you must:

1. Establish one or more NetType namespaces in your workspace, populated

with functions and variables that you wish to export as methods, properties

and events.

2. Use the File/Export … menu item on the Session window to create a

Microsoft .Net Assembly (DLL) which contains your workspace bound to the

Run-Time DLL.

To distribute your .Net Classes, you need to supply and install

1. Your Assembly file (DLL)

2. The Run-Time DLL

3. The Bridge DLL

4. The DyalogNet DLL

5. Whatever additional files that may be required by your .Net Assembly.

The Bridge DLL and DyalogNet DLL must be installed in the global assembly cache

(GAC) using the gacutil.exe utility program. In addition, the Bridge DLL must be

on the system path.

46 Dyalog APL/W User Guide

Additional Files for SQAPL
If your application uses the SQAPL/EL ODBC interface, you must distribute and install

four additional files, according to the Edition you are using, as shown in the table

below.

Name Folder File Name

Unicode Edition

SQAPL INI Dyalog APL 12.0 Unicode sqapl.ini

SQAPL ERR Dyalog APL 12.0 Unicode sqapl.err

SQAPL DLL Dyalog APL 12.0 Unicode\bin cndya60Uni.dll

APLUNICD INI Dyalog APL 12.0 Unicode\bin aplunicd.ini

Classic Edition

SQAPL INI Dyalog APL 12.0 Classic sqapl.ini

SQAPL ERR Dyalog APL 12.0 Classic sqapl.err

SQAPL DLL Dyalog APL 12.0 Classic\bin cndya60.dll

APLUNICD INI Dyalog APL 12.0 Classic\bin aplunicd.ini

The SQAPL DLL must be installed in the user’s Windows directory or be on the user’s

path.

You must also create the following registry entries (for each and every user) in a folder

named HKEY_CURRENT_USER/Software/Insight/SQAPL. You cannot

specify these parameters any other way.

APL_UNICODE This specifies the full path name of the APLUNICD INI,

including the file name and its extension.

SQAPLPATH This specifies the full path name of the directory in

which the SQAPL INI and SQAPL ERR files are

installed

 Chapter 1: Installation and Configuration 47

Miscellaneous Other Files

AUXILIARY PROCESSORS

If you use any of the Auxiliary Processors (APs) included in the sub-directory

XUTILS, you must include these with your application. Note that, like workspaces,

Dyalog APL searches for APs using the WSPATH parameter. If your application uses

APs, you must ensure that you specify WSPATH or that the default WSPATH is

adequate for your application..

DYALOG32

This DLL is used by some of the functions provided in the QUADNA.DWS workspace.

If you include any of these in your application this DLL must be installed in the user’s

Windows directory or be on the user’s path.

DOS_U32

This DLL is used by the functions provided in the DOSUTILS.DWS workspace. If you

include any of these in your application this DLL must be installed in the user’s

Windows directory or be on the user’s path.

Registry Entries for Run-Time Applications

The Run-Time DLL does not obtain any parameter values from the Windows registry.

If you need to specify any Dyalog APL parameter values, they must be defined in the

command line when you create an EXE.

The Run-Time EXE does obtain parameter values for the Windows registry, but does

not require them to be present. If the default values of certain parameters are

inappropriate, you may specify their values on the command line. There is normally no

requirement to install registry entries for a run-time application that uses the Run-Time

EXE.

For example, your application may requires a greater or lesser MAXWS parameter

(workspace size) than the default value. This may be done by adding the phrase

MAXWS=nnnn (where nnnn is the required workspace size in kilobytes) after the

name of your application workspace on the command line, for example:

 dyalogrt.exe MYAPP.DWS MAXWS=8096

Note that the default value of the DYALOG parameter (which specifies where it looks

for various other files and sub-directories) is the directory from which the application

(dyalogrt.exe) is loaded.

48 Dyalog APL/W User Guide

Nevertheless, registry entries will be required in the following circumstances.

1. If your Classic Edition run-time application requires that the user inputs APL

characters, you will need to specify input/output tables (parameters APLK,

APLT, APLKEYS and APLTRANS).

2. If your application uses the NFILES Auxiliary Processor (now superseded by the

�Nxxx system functions), you must specify a registry entry for the APLKEYS

parameter. This is required so that NFILES can find any translate tables you may

use. Note that NFILES cannot see the values of parameters specified on the APL

command line, so you must specify APLKEYS in the registry.

Installing Registry Entries
To specify parameters using the Registry, you must install a suitable registry folder for

each user of your application. By default, Version 12.0 will use the registry folder:

 HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 12.0 Unicode

or
 HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 12.0

You may choose a different name for your registry folder if you wish. If so, you must

tell Dyalog APL the name of this folder by specifying the INIFILE parameter on the

command line. For example:

dyalogrt.exe MYAPP.DWS INIFILE=Software\MyCo\MyApplication

You may install entries into the registry folder in one of two ways:

1. Using a proprietary installation program such as InstallShield

2. Using the REGEDIT utility. This utility program installs registry entries defined in

a text file that is specified as the argument to the program. For example, if your

file is called APLAPP.REG, you would install it on your user’s system by

executing the command:

REGEDIT APLAPP.REG

An example 5-line file that specifies the APLNID and MAXWS parameters might be

as follows:

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Dyalog\Dyalog APL/W 12.0]
"aplnid"="42"
"maxws"="8096"

 Chapter 1: Installation and Configuration 49

COM Objects and the Dyalog APL DLL

Introduction
In each Edition, there are two versions of the Dyalog APL Dynamic Link Library,

named dyalog120_unicode.dll and dyalog120rt_unicode.dll

(Unicode Edition) and dyalog120.dll and dyalog120rt.dll (Clasic Edition).

dyalog120_unicode.dll and dyalog120.dll are complete Dyalog APL

development systems packaged as Dynamic Link Libraries.

dyalog120_unicode.dll and dyalog120rt_unicode.dll and

dyalog120rt.dll are the run-time versions of dyalog120.dll.

In the remainder of this section, the term the Dyalog APL DLL is used to refer to any

one of these DLLs. The term COM object is used to refer to a Dyalog APL in-process

OLE Server (OLEServer object) or a Dyalog APL ActiveX Control (ActiveXControl

object).

The Dyalog APL DLL is used to host COM objects and .Net objects written in Dyalog

APL. Although this section describes how it operates with COM objects, much of this

also applies when it hosts .Net objects. Further information is provided in the .Net

Interface Guide.

Classes, Instances and NameSpace Cloning
A COM object, whether written in Dyalog APL or not, represents a class. When a host

application loads a COM object, it actually creates an instance of that class.

When a host application creates an instance of a Dyalog APL COM object, the

corresponding OLEServer or ActiveXControl namespace is cloned. If the host creates a

second instance, the original namespace is cloned a second time.

Cloned OLEServer and ActiveXControl namespaces are created in almost exactly the

same way as those that you can make yourself using �OR and �WC except that they do

not have separate names. In fact, each clone believes itself to be the one and only

original OLEServer or ActiveXControl namespace, with the same name, and is

completely unaware of the existence of other clones.

Notice that cloning does not initially replicate all the objects within the OLEServer or

ActiveXControl namespace. Instead, the objects inside the cloned namespaces are

actually represented by pointers to the original objects in the original namespace. Only

when an object is changed does any information get replicated. Typically, the only

objects likely to differ from one instance to another are variables, so only one copy of

the functions will exist in the workspace. This design enables many instances of a

Dyalog APL COM object to exist without overloading the workspace.

50 Dyalog APL/W User Guide

Workspace Management
The Dyalog APL DLL does not use a fixed maximum workspace size, but

automatically increases the size of its active workspace as required. If you write a run-

away COM object, or if there is insufficient computer memory available to load a new

control, it is left to the host application or to Windows itself to deal with the situation.

When an application loads its first Dyalog APL COM object, it starts the Dyalog APL

DLL which initialises a CLEAR WS. It then copies the namespace tree for the

appropriate OLEServer or ActiveXControl object into its active workspace.

This namespace tree comprises the OLEServer or ActiveXControl namespace itself,

together with all its parent namespaces with the exception of the root workspace itself.

Note that for an ActiveXControl, there is at least one parent namespace that represents

a Form.

For example, if an ActiveXControl namespace is called #.F.Dual, the Dyalog APL

DLL will copy the contents of #.F into its active workspace when the first instance of

the control is loaded by the host application.

If the same host application creates a second instance of the same OLEServer or

ActiveXControl, the original namespace is cloned as described above and there is no

further impact on the workspace

If the same host application creates an instance of a different Dyalog APL COM object,

the namespace tree for this second object is copied from its DLL or OCX file into the

active workspace. For example, if the second control was named X.Y.MyControl,

the entire namespace X would be copied. This design raises a number of points:

1. Unless you are in total control of the user environment, you should design a

Dyalog APL COM object so that it can operate in the same workspace as

another Dyalog APL COM object supplied by another author. You cannot

make any assumptions about file ties or other resources that are properties of

the workspace itself.

2. If you write an ActiveXControl whose ultimate parent namespace is called F,

a host application could not use your control at the same time as another

ActiveXControl (perhaps supplied by a different author) whose ultimate

parent namespace is also called F.

3. Dyalog APL COM objects must not rely on variables or utility functions that

were present in the root workspace when they were saved. These functions

and variables will not be there when the object is run by the Dyalog APL

DLL.

4. A Dyalog APL COM object may create and subsequently use functions and

variables in the root workspace, but if two different COM objects were to

adopt the same policy, there is a danger that they would interfere with one

another. The same is true for �SE.

 Chapter 1: Installation and Configuration 51

Multiple COM Objects in a Single Workspace
If your workspace contains several OLEServer or ActiveXControl objects which have

the same ultimate parent namespace, the Dyalog APL DLL will copy them all into the

active workspace at the time when the first one is instanced. If the host application

requests a second COM object that is already in the workspace, the namespace tree is

not copied again.

If the workspace contains several OLEServer or ActiveXControl objects which have

different ultimate parents, their namespace trees will be copied in separately.

Parameters
The Dyalog APL DLL does not read parameters such as aplnid or wspath from the

registry, command-line or environment variables. This means that all such parameters

will have their default values.

52 Dyalog APL/W User Guide

System Errors

Introduction
Dyalog APL will display a System Error Dialog and (normally) terminate in one of

two circumstances:

1. As a result of the failure of a workspace integrity check

2. As a result of a System Exception

Workspace Integrity
When you)SAVE your workspace, Dyalog APL first performs a workspace integrity

check. If it detects any discrepancy or violation in the internal structure of your

workspace, APL does not overwrite your existing workspace on disk. Instead, it

displays the System Error dialog box and saves the workspace, together with

diagnostic information, in an aplcore file before terminating.

A System Error code is displayed in the dialog box and should be reported to Dyalog

for diagnosis.

Note that the internal error that caused the discrepancy could have occurred at any time

prior to the execution of)SAVE and it may not be possible for Dyalog to identify the

cause from this aplcore file.

If APL is started in debug mode with the –Dc, -Dw or –DW flags, the Workspace

Integrity check is performed more frequently, and it is more likely that the resulting

aplcore file will contain information that will allow the problem to be identified and

corrected.

 Chapter 1: Installation and Configuration 53

System Exceptions
Non-specific System Errors are the result of Operating System exceptions that can

occur due to a fault in Dyalog APL itself, an error in a Windows or other DLL, or even

as a result of a hardware fault. The following system exceptions are separately

identified.

Code Description Suggested Action

900

A Paging Fault has occurred As the most likely cause is a

temporary network fault,

recommended course of action is to

restart your program.

990 &

991

An exception has occurred in the

Development or Run-Time DLL.

995

An exception has occurred in a

DLL function called via �NA

Carefully check your �NA

statement and the arguments that

you have passed to the

DLL function

996

An exception has occurred in a

DLL function called via a

threaded �NA call

As above

997
An exception has occurred while

processing an incoming OLE call

999

An exception has been caused by

Dyalog APL or by the Operating

System

54 Dyalog APL/W User Guide

Recovering Data from aplcore files
Objects may often (but not always) be recovered from aplcore using)COPY. Note that

because (by default) the aplcore file has no extension, it is necessary to explicitly add a

⌷dot⌷, or APL will attempt to find the non-existent file aplcore.DWS, i.e.

)COPY aplcore.

Reporting Errors to Dyalog
If APL crashes and saves an aplcore file, please email the following information to

support@dyalog.com:

• a brief description of the circumstances surrounding the error

• your Dyalog APL Version number and Build ID (see Help/About)

• the aplcore file itself

If the problem is reproducible, i.e. can be easily repeated, please also send the

appropriate description, workspace, and other files required to do so.

System Error Dialog Box
The System Error Dialog illustrated below was produced by deliberately inducing a

system exception in the Windows DLL function memcpy(). The functions used were:

 S foo
[1] goo
 S
 S goo
[1] hoo
 S
 S hoo
[1] crash
 S

 S crash
[1] �NA'dyalog32|MEMCPY u u u'
[2] MEMCPY 255 255 255
 S

 Chapter 1: Installation and Configuration 55

56 Dyalog APL/W User Guide

Options

Item Parameter Description

Generate

complete image

core

CreateAplCoreonSyserror Dumps a complete core image

with the User Mode Process

Dumper (a Microsoft tool) - see

below.

Create Trappable

Error

 If you check this box (only

enabled on System Error codes

995 and 996), APL will not

terminate but will instead generate

an error 91 (EXTERNAL DLL
EXCEPTION) when you press

Dismiss.

Create an aplcore

file

CreateAplCoreonSyserror If this box is checked, an aplcore

file will be created.

Pass exception on

to operating

system

PassExceptionsToOpSys If this box is checked, the

exception will be passed on to

your current debugging tool (e.g.

Visual Studio).

Paste to clipboard Copies the contents of the APL

stack trace window to the

Clipboard.

 Chapter 1: Installation and Configuration 57

Generate complete image core

The Generate complete image core option attempts to execute

[SYSDIR]\userdump.exe, where [SYSDIR] is the windows system directory

(typically c:\windows\system32, and userdump.exe is the User Mode

Process Dumper, a Microsoft tool that can be downloaded from the following url

(which you may copy from Winhelp and paste into a browser):

http://www.microsoft.com/downloads/details.aspx?FamilyID=e23cd741-d222-48df-

9cd8-28796f414256&DisplayLang=en

The process creates a file called dyalog.core in the current directory. This file contains

much more debug information than a normal aplcore (and is much larger than an

aplcore) and can be sent to Dyalog Limited (zip it first please). Alternatively the file

can be loaded into Visual Studio .Net to do your own debugging.

Debugging your own DLLs
If you are using Visual Studio on Microsoft Windows XP (or similar), the following

procedure should be used to debug your own DLLs when an appropriate Dyalog APL

System Error occurs.

Ensure that the Pass Exception box is checked, then click on Dismiss to close the

System Error dialog box.

The system exception dialog box appears. Click on Debug to start the process in the

Visual Studio debugger.

After debugging, the system exception dialog box appears again. Click on Don't send

to terminate Microsoft Windows XP's exception handling.

ErrorOnExternalException Parameter

This parameter allows you to prevent APL from displaying the System Error dialog

box (and terminating) when an exception caused by an external DLL occurs. The

following example illustrates what happens when the functions above are run, but with

ErrorOnExternalException set to 1.

58 Dyalog APL/W User Guide

 �>2 �NQ'.' 'GetEnvironment'
'ErrorOnExternalException'
1
 foo
EXTERNAL DLL EXCEPTION
crash[2] MEMCPY 255 255 255
 :
 �EN
91
)SI
crash[2]*
hoo[1]
goo[1]
foo[1]

 59

C H A P T E R 2

The APL Environment

Introduction
The Dyalog APL Development Environment includes a Session Manager, an Editor,

and a Tracer all of which operate in windows on the screen. The session window is

created when you start APL and is present until you terminate your APL session. In

addition there may be a number of edit and/or trace Windows, which are created and

destroyed dynamically as required. All APL windows are under the control of

Windows and may be selected, moved, resized, maximised and minimised using the

standard facilities that Windows provides.

Session Configuration
The Dyalog APL/W session is fully configurable. Not only can you change the

appearance of the menus, tool bars and status bars, but you can add new objects of your

choice and attach your own APL functions and expressions to them. Functions and

variables can be stored in the session namespace. This is independent of the active

workspace; so there is no conflict with workspace names, and your utilities remain

permanently accessible for the duration of the session. Finally, you may set up

different session configurations for different purposes which can be saved and loaded

as required.

The session window is defined by an object called �SE. This is very similar to a Form

object, but has certain special properties. The menu bar, tool bar and status bars on the

session window are in fact MenuBar, ToolControl and StatusBar objects owned by

�SE. All of the other components such as menu items and tool buttons are also

standard GUI objects. You may use �WC to create new session objects and you may

use �WS to change the properties of existing ones. �WG and �WN may also be used with

�SE and its children.

60 Dyalog APL/W User Guide

Components of the session that perform actions (MenuItem and Button objects) do so

because their Event properties are defined to execute system operations or APL

expressions. System operations comprise a pre-defined set of actions that can be

performed by Dyalog APL/W. These are coded as keywords within square brackets.

For example, the system operation '[WSClear]' produces a clear ws, after first

displaying a dialog box for confirmation. You may customise your session by adding

or deleting objects and by attaching system operations or APL expressions to them.

Like any other object, �SE is a namespace that may contain functions and variables.

Furthermore, �SE is independent of the active workspace and is unaffected by)LOAD

and)CLEAR. It is therefore sensible to store commonly used utilities, particularly

those utilities that are invoked by events on session objects, in �SE itself, rather than in

each of your application workspaces.

The possibility of configuring your APL session so extensively leads to the

requirement to have different sessions for different purposes. To meet this need,

sessions are stored in special files with a .DSE (Dyalog Session) extension. The default

session (i.e. the one loaded when you start APL) is specified by the session_file

parameter. You may customise this session and then save it over the default one or in a

separate file. You can load a new session from file at any stage without affecting your

active workspace.

Keyboard Configuration

Unicode Edition

Unicode Edition supports the use of standard Windows keyboards that have the

additional capability to generate APL characters when the user presses Ctrl, Alt, AltGr

(or some other combination of meta keys) in combination with the normal character

keys.

Unicode Edition is supplied with a two sets of such keyboards (one using Ctrl and one

using AltGr) for a range of different languages. These keyboards were created using

the Microsoft Keyboard Layout Creator (MSKLC) and you may use the same tool to

customise one of the supplied keyboards or to create a new one.

Classic Edition

Classic Edition uses a proprietary mechanism for the input of APL symbols and also

provides a fully customisable keyboard.

The layout is defined by an Input Translate Table whose name is specified by the aplk

parameter. This is a character file with a .DIN extension that (normally) resides in the

APLKEYS sub-directory. The Input Translate Table provides two kinds of mapping.

Firstly, it specifies the mapping between a keystroke and a character in �AV. For

example (in unified mode) it specifies that Ctrl+r means �AV[174] (Ρ).

 Chapter 2: The APL Environment 61

Secondly, it specifies the mapping between keystrokes and special actions or

commands. For example, that Shift+Delete means cut. In non-GUI implementations of

Dyalog APL, all commands must be issued through the keyboard. In Dyalog APL/W,

most commands may also be given using menus and buttons or with the mouse.

Commands are mapped to particular keystrokes through the Input Translate Table for

your keyboard. The keystrokes used have been carefully chosen so as to be compatible

with Common User Access (CUA) conventions. If you do not like this standard

mapping, you can change it by editing this file.

Using the Mouse

Positioning the Cursor

The cursor may be positioned within the current APL window by moving the mouse

pointer to the desired location and then clicking the Left Button. The APL cursor will

then move to the character under the pointer.

Selection

Dragging the mouse selects the text from the point where the mouse button is

depressed to the point where the button is released. When you select multiple lines, the

use of the left mouse button always selects text from the start of the line. A contiguous

block of text can be selected by dragging with the right mouse button.

Double-clicking the left mouse button to the left of a line selects the whole line,

including the end-of-line character.

Scrolling

Data can be scrolled in a window using the mouse in conjunction with the scrollbar.

Invoking the Editor

The Editor can be invoked by placing the mouse pointer over the name of an editable

object and double-clicking the left button on the mouse. If you double-click on the

empty Input Line it acts as "Naked Edit" and opens an edit window for the suspended

function (if any) on the APL stack. For further details, see the section on the Editor

later in this Chapter. See also DoubleClickEdit parameter.

62 Dyalog APL/W User Guide

The Current Object

If you position the input cursor over the name of an object in the session window, that

object becomes the current object. This name is stored in the CurObj property of the

Session object and may be used by an application or a utility program. This means that

you can click the mouse over a name and then select a menu item or click a button that

executes code that accesses the name.

The Session Pop-up Menu

Clicking the right mouse button brings up the Session pop-up menu. This is described

later in this chapter.

Drag-and-Drop Editing

Drag-and-Drop editing is the easiest way to move or copy a selection a short distance

within an edit window or between edit windows.

To move text using drag-and-drop editing:

1. Select the text you want to move.

2. Point to the selected text and then press and hold down the left mouse

button. When the drag-and-drop pointer appears, drag the cursor to a new

location.

3. Release the mouse button to drop the text into place.

To copy text using drag-and-drop editing:

1. Select the text you want to move.

2. Hold down the Ctrl key, point to the selected text and then press and hold

down the left mouse button. When the drag-and-drop pointer appears, drag

the cursor to a new location.

3. Release the mouse button to drop the text into place.

If you drag-and-drop text within the Session window, the text is copied and not moved

whether or not you use the Ctrl key.

Interrupts
To generate an interrupt, click on the Dyalog APL icon in the Windows System Tray;

then choose Weak Interrupt or Strong Interrupt. To close the menu, click Cancel.

Alternatively, to generate a weak interrupt, press Ctrl+Break, or select Interrupt from

the Action menu on the Session Window.

 Chapter 2: The APL Environment 63

Unicode Edition Keyboard

Introduction
Unicode Edition supports the use of standard Windows keyboards that have the

additional capability to generate APL characters when the user presses Ctrl, Alt, AltGr

(or some other combination of meta keys) in combination with the normal character

keys.

Version 12.0 is supplied with two sets of such keyboards (one using Ctrl and one using

AltGr) for a range of different languages as listed below. These keyboards were created

using the Microsoft Keyboard Layout Creator (MSKLC) and you may use the same

tool to customise one of the supplied keyboards or to create a new one.

Installation
During the Installation of Dyalog Version 12.0 Unicode Edition, setup installs one or

two APL keyboard layouts onto your system. These keyboard layouts are installed as

additional services for your default Input Language.

The following table lists the APL keyboards included with Dyalog APL Version 12.0

Unicode Edition at the time of publication. Other keyboards will be included as they

are developed.

Ctrl Keyboards AltGr Keyboards

Danish - Dyalog Ctrl Danish - Dyalog AtGr

Finnish - Dyalog Ctrl Finnish - Dyalog AltGr

French - Dyalog Ctrl French - Dyalog AltGr

German - Dyalog Ctrl German Dyalog AltGr

Icelandic - Dyalog Ctrl

Italian - Dyalog Ctrl Italian - Dyalog AltGr

Norwegian - Dyalog Ctrl

Russian - Dyalog Ctrl

Swedish - Dyalog Ctrl

UK - Dyalog Ctrl UK - Dyalog AltGr

US - Dyalog Ctrl US - Dyalog AltGr

64 Dyalog APL/W User Guide

Setup automatically installs only those keyboards that correspond to your default Input

Language, as specified via Control Panel/Regional and Language Options.

Note that if your default input language is not one of those listed in the table, Seup will

not install any APL keyboards. However, you may create your own layout (or adapt

one of the existing ones) using MSKLC).

The following picture illustrates the Text Services and Input Languages configuration

pane after installing Unicode Edition onto a Windows XP system on which the default

Input Language is English (United Kingdom). Incidentally, on this particular system,

the Danish and Greek languages are also installed.

 Chapter 2: The APL Environment 65

Configuring your APL Keyboard for Use
There are 3 different ways to use your APL keyboard:

1. Make the APL keyboard your default Windows keyboard (for all applications)

2. Configure APL to select your APL keyboard on start-up

3. Manually select your APL keyboard for use with your APL session window

every time you start APL.

Making your APL Keyboard the default Windows keyboard

Both the Dyalog AltGr and Dyalog Ctrl keyboard layouts are designed to be fully

compatible with your standard keyboard and you may adopt one of these as your

default Windows keyboard. To do this, simply make it the Default Input Language as

illustrated by the next 2 pictures. Note that the default keyboard layout is shown in

bold..

66 Dyalog APL/W User Guide

To change your default keyboard (Windows XP), open Control Panel/Regional and

Languages, select the Languages tab and click Details. This brings up the Text

Services and Input Languages dialog box shown below.

Select your choice of APL keyboard from the drop-down list as illustrated.

 Chapter 2: The APL Environment 67

If you wish to, you can select a keystroke to enable you to select it quickly from the

keyboard.

68 Dyalog APL/W User Guide

Automatic Keyboard Selection

Unicode Edition can optionally select your APL keyboard each time you start APL. To

achieve this, open the Unicode Input configuration pane (Options/Configure/Unicode

Input) then:

In the Keyboard drop-drown, select one of your installed APL keyboards.

Enable the Activate selected keyboard checkbox

Click OK

The value of the checkbox and the name of your chosen keyboard are saved in registry

keys named InitialKeyboardLayoutInUse and

InitialKeyboardLayout.

The choices shown in the above picture will be reflected by the following values:

InitialKeyboardLayoutInUse = 1

InitialKeyboardLayout = " UK - Dyalog AltGr"

 Chapter 2: The APL Environment 69

Manual Keyboard Selection

Each time you start APL, the Session window will be associated with your current

Windows keyboard layout. This will be either your default keyboard, or the one you

most recently selected from the Language Bar.

On start-up, Unicode Edition tests your current keyboard to see if it includes any

definitions that will generate an APL symbol. If the current keyboard is incapable of

generating APL symbols, the system will display the following message box.

You can switch to an APL keyboard using the Language Bar, as illustrated in the

following picture:

70 Dyalog APL/W User Guide

On-Screen Keyboard
Included with Dyalog APL Version 12.0 is the Comfort On-Screen Keyboard 2.1

which is specially configured for use with Dyalog APL (Unicode Edition) and

distributed under a licence agreement with Comfort Software.

The On-Screen keyboard is highly configurable and supports a wide range of visual

effects including different colour schemes and transparency options.

Not only does it support a large number of standard physical keyboards, but it includes

a tool to design your own layout corresponding to the actual keyboard attached to your

computer.

You may choose to have the On-Screen keyboard permanently shown or have it pop-

up on a specific keystroke or when you press and hold Shift, Ctrl or Alt, and there is a

corresponding variety of ways to have it disappear.

The following pictures illustrate the appearance of a UK - Dyalog AltGr keyboard, in

Normal, AltGr and AltGr+Shift modes.

Normal

 Chapter 2: The APL Environment 71

AltGr Mode

AltGr+Shift

72 Dyalog APL/W User Guide

Classic Edition Keyboard
The standard Classic Edition Version 12.0 keyboard tables are files supplied in the

aplkeys sub-directory named cc.din where cc is the standard 2-character country

code, e.g. uk.din. The keyboard tables supplied with previous versions of Dyalog

APL are distributed in the old\aplkeys sub-directory and may be used instead.

Please refer to previous versions of this document.

Note that from Version 11.0 onwards, the standard tables do not support the entry of

APL underscored characters Z�[\]^_`abcdefghijklmnopqr�.

The standard table supports two modes of use; traditional (mode 0) and unified (mode

1). The keyboard starts in mode 1 and may be switched between modes by clicking the

Uni/Apl field in the status bar or by keying * on the Numeric-Keypad.

Unified Layout
The following picture illustrates the standard UK keyboard Unified layout.

 Chapter 2: The APL Environment 73

APL symbols are entered using the Ctrl and Ctrl+Shift keys as illustrated below.

74 Dyalog APL/W User Guide

Traditional Layout
The following picture illustrates the standard UK keyboard Traditional layout.

 Chapter 2: The APL Environment 75

APL symbols are entered using the Shift and Ctrl+Shift keys as illustrated below.

76 Dyalog APL/W User Guide

Line-Drawing Symbols
Classic Edition includes 12 single-line graphics characters for drawing lines and boxes.

Line-drawing characters are entered using the keys on the numeric keypad in

conjunction with the Ctrl key as shown below. Num Lock must be on.

 Normal Ctrl

7 8 9 s t u

4 5 6 v w x

1 2 3 y z {

 0

 . | }

Note: to accommodate other characters, line-drawing symbols are located in the

non-printable area of the font layout. Although these characters can normally

be used in output to the session (function: DISP in the UTIL workspace uses

them), many printer drivers and some display drivers will not display

characters from these positions in the font.

 Chapter 2: The APL Environment 77

Keyboard Shortcuts
The terms keyboard shortcut (Unicode Edition) and command (Classic Edition) are

used herein to describe a keystroke that generates an action, rather than one that

produces a symbol.

Unicode Edition
Unicode Edition provides a number of shortcut keys that may be used to perform

actions. For compatibility with Classic Edition and with previous Versions of Dyalog

APL.these are identified by 2-character codes; for example the action to start the

Tracer is identified by the code <TC>, and mapped to user-configurable keystrokes.

In the Unicode Edition, Keyboard Shortcuts are defined using

Options/Configure/Keyboard Shortcuts and stored in the Windows Registry.

To the right of the last symbol in the Language Bar is the Keyboard Shortcut icon

If you hover the mouse over this icon, a pop-up tip is displayed to remind you of your

keyboard shortcuts as illustrated below.

78 Dyalog APL/W User Guide

Classic Edition
Commands fall into four categories, namely cursor movement, selection, editing

directives and special operations, and are summarised in the following tables. The

input codes in the first column of the tables are the codes by which the commands are

identified in the Input Translate Table.

Input Code Keystroke Description

LS Ctrl+PgUp Scrolls left by a page

RS Ctrl+PgDn Scrolls right by a page

US PgUp Scrolls up by a page

DS PgDn Scrolls down by a page

LC Left Arrow Moves the cursor one character position to the left

RC Right Arrow Moves the cursor one character position to the right

DC Down Arrow Moves the cursor to the current character position

on the line below the current line

UC Up Arrow Moves the cursor to the current character position

on the line above the current line

UL Ctrl+Home Move the cursor to the top-left position in the

window

DL Ctrl+End Moves the cursor to the bottom-right position in the

window

RL End Moves the cursor to the end of the current line

LL Home Moves the cursor to the beginning of the current

line

LW Ctrl+Left Arrow Moves the cursor to the beginning of the word to

the left of the cursor

RW Ctrl+Right

Arrow

Moves the cursor to the end of the word to the right

of the cursor

TB Ctrl+Tab Switches to the next session/edit/trace window

BT Ctrl+Shift+Tab Switches to the previous session/edit/trace window

Cursor movement Commands

 Chapter 2: The APL Environment 79

Input Code Keystroke Description

Lc Shift+Left Arrow Extends the selection one character

position to the left

Rc Shift+Right Arrow Extends the selection one character

position to the right

Lw Ctrl+Shift+Left Arrow Extends the selection to the

beginning of the word to the left of

the cursor

Rw Ctrl+Shift+Right Arrow Extends the selection to the end of

the word to the right of the cursor

Uc Shift+Up Arrow Extends the selection to the current

character position on the line above

the current line

Dc Shift+Down Arrow Extends the selection to the current

character position on the line below

the current line

Ll Shift+Home Extends the selection to the

beginning of the current line

Rl Shift+End Extends the selection to the end of

the current line

Ul Ctrl+Shift+Home Extends the selection to the

beginning of the first line in the

window

Dl Ctrl+Shift+End Extends the selection to the end of

the last line in the window

Us Shift+PgUp Extends the selection up by a page.

Ds Shift+PgDn Extends the selection down by a page

Selection Commands

80 Dyalog APL/W User Guide

Input Code Keystroke Description

DI Delete Deletes the selection

DK Ctrl+Delete Deletes the current line in an Edit window.

Deletes selected lines in the Session Log.

CT Shift+Delete Removes the selection and copies it to the

clipboard

CP Ctrl+Insert Copies the selection into the clipboard

FD Ctrl+Shift+Enter Reapplies the most recent undo operation

BK Ctrl+Shift+Bksp Performs an undo operation

PT Shift+Insert Copies the contents of the clipboard into a

window at the location selected

OP Ctrl+Shift+Insert Inserts a blank line immediately after the

current one (editor only)

HT Tab Indents text

TH Shift+Tab Removes indentation

RD Keypad-slash Reformats a function (editor only)

TL Ctrl+Alt+L Toggles localisation of the current name

GL Ctrl+Alt+G Go to [line]

AO Ctrl+Alt+, Add Comments

DO Ctrl+Alt+. Delete Comments

Editing Directives

Input Code Keystroke Description

IN Insert Insert on/off

LN Keypad-minus Line numbers on/off

ER Enter Execute

ED Shift+Enter Edit

TC Ctrl+Enter Trace

EP Esc Exit

QT Shift+Esc Quit

Special Operations

 Chapter 2: The APL Environment 81

The Session Colour Scheme
Within the Development Environment, different colours are used to identify different

types of information. These colours are normally defined by registry entries and may

be changed using the Colour Configuration dialog box as described later in this

chapter. In the Classic Edition, colours may alternatively be defined in the Output

Translate Table (normally WIN.DOT). This table recognises up to 256 foreground and

256 background colours which are referenced by colour indices 0-255. These colour

indices are mapped to physical colours in terms of their Red, Green and Blue

intensities (also 0-255). Foreground and background colours are specified

independently as Cnnn or Bnnn. For example, the following entry in the Output

Translate Table defines colour 250 to be red on magenta.

 C250: 255 0 0 + Red foreground
 B250: 255 0 255 + Magenta background

The first table below shows the colours used for different session components. The

second table shows how different colours are used to identify different types of data in

edit windows.

Colour Used for Default

249 Input and marked lines Red on White

250 Session log Black on White

252 Tracer : Suspended Function Yellow on Black

253 Tracer : Pendent Function Yellow on Dark Grey

245 Tracer : Current Line White on Red

Default Colour Scheme - Session

Colour Array Type Editable Default

236 Simple character matrix Yes Green on Black

239 Simple numeric No White on Dk Grey

241 Simple mixed No Cyan on Dk Grey

242 Character vector of vectors Yes Cyan on Black

243 Nested array No Cyan on Dk Grey

245 �OR object No White on Red

248 Function or Operator No White on Dk Cyan

254 Function or Operator Yes White on Blue

Default Colour Scheme Edit windows

82 Dyalog APL/W User Guide

Syntax Colouring in the Session
As an adjunct to the overall Session Colour Scheme, you may choose to apply a syntax

colouring scheme to the current Session Input line(s). You may also extend syntax

colouring to previously entered input lines, although this only applies to input lines in

the current session; syntax colouring information is not remembered in the Session

Log.

Syntax colouring may be used to highlight the context of names and other elements

when the line was entered. For example, you can identify global names and local

names by allocating them different colours.

See Colour Selection Dialog for further details.

The Session Window
The primary purpose of the session window is to provide a scrolling area within which

you may enter APL expressions and view results. This area is described as the session

log. Normally, the session window will have a menu bar at the top with a tool bar

below it. At the bottom of the session window is a status bar. However, these

components of the session may be extensively customised and, although this chapter

describes a typical session layout, your own session may look distinctly different. A

typical Session is illustrated below.

A typical Session window

 Chapter 2: The APL Environment 83

Window Management
When you start APL, the session is loaded from the file specified by the session_file

parameter . The position and size of the session window are defined by the Posn and

Size properties of the Session object �SE, which will be as they were when the session

file was last saved.

The name of the active workspace is shown in the title bar of the window, and changes

if you rename the workspace or)LOAD another.

You can move, resize, minimise or maximise the Session Window using the standard

Windows facilities.

In addition to the Session Window itself, there are various subsidiary windows which

are described later in the Chapter. In general, these subsidiary windows may be docked

inside the Session window, or may be stand-alone floating windows. You may dock

and undock these windows as required. The standard Session layout illustrated above,

contains docked Editor, Tracer and SIStack windows.

Note that the session window is only displayed when it is required, i.e. when APL

requests input from or output to the session. This means that end-user applications that

do not interact with the user through the session, will not have an APL session

window.

84 Dyalog APL/W User Guide

Docking
Nearly all of the windows used in the Dyalog APL IDE may be docked in the Session

window or be stand-alone floating windows. When windows are docked in the Session,

the Session window is split into resizable panes, separated by splitters. The following

example, using the Status window, illustrates the principles involved. (The use of the

Status window is described later in this Chapter.)

To start with, the Status window is hidden. You may display it by selecting the Status

menu item from the Tools menu. It initially appears as a floating (undocked) window

as shown below.

 Chapter 2: The APL Environment 85

If you press the left mouse button down over the Status window title bar, and drag it,

you will find that when the mouse pointer is close to an edge of the Session window,

the drag rectangle indicates a docking zone as shown below. This indicates the space

that the window will occupy if you now release the mouse button to dock it.

86 Dyalog APL/W User Guide

The next picture shows the result of the docking operation. The Session window is now

split into 2 panes, with the Status window in the upper pane and the Session log

window in the lower pane. You can resize the panes by dragging with the mouse.

You will notice that a docked window has a title bar (in this case, the caption is Status)

and 3 buttons which are used to Minimise, Maximise and Close the docked window.

 Chapter 2: The APL Environment 87

The next picture shows the result of minimising the Status window pane. All that

remains of it is its title bar. The Minimise button has changed to a Restore button,

which is used to restore the pane to its original size.

88 Dyalog APL/W User Guide

You can pick up a docked window and then re-dock it along a different edge of the

Session as illustrated below.

 Chapter 2: The APL Environment 89

Docking the Status window along the left edge of the Session causes the Session

window to be split into two vertical panes. Notice how the title bar is now drawn

vertically.

If you click the right mouse button over any window, its context menu is displayed. If

the window is dockable, the context menu contains the following options:

Undock Undocks the docked window. The window is displayed at whatever

position and size it occupied prior to being docked.

Hide Caption Hides the title bar of the docked window,

Dockable Specifies whether the window is currently dockable or is locked in its

current state. You can use this to prevent the window from being

docked or undocked accidentally.

90 Dyalog APL/W User Guide

The last picture shows the effect of using Hide Caption to remove the title bar. In this

state, you can resize the pane with the mouse, but the Minimise, Maximise and Close

buttons are not available. However, you can restore the object's title bar using its

context menu.

 Chapter 2: The APL Environment 91

Entering and Executing Expressions

Introduction
The session contains the input line and the session log. The input line is the last line in

the session, and is (normally) the line into which you type an expression to be

evaluated.

The session log is a history of previously entered expressions and the results they

produced.

If you are using a log file, the Session log is loaded into memory when APL is started

from the file specified by the log_file parameter file. When you close your APL

session, the Session log is written back out to the log file, replacing its previous

contents.

In general you type an expression into the input line, then press Enter (ER) to run it.

After execution, the expression and any displayed results become part of the session

log.

You can move around in the session using the scrollbar, the cursor keys, and the PgUp

and PgDn keys. In addition, Ctrl+Home (UL) moves the cursor to the beginning of the

top-line in the Log and Ctrl+End (DL) moves the cursor to the end of the last (i.e. the

current) line in the session log. Home (LL) and End (RL) move the cursor to the

beginning and end respectively of the line containing the cursor.

92 Dyalog APL/W User Guide

Language Bar
The Language Bar is an optional window which is initially docked to the Session

Window, to make it easy to pick APL symbols without using the keyboard.

If you hover the mouse pointer over a symbol in the APL Language Bar, a pop-up tip is

displayed to remind you of its usage. If you click on a symbol in the Language Bar,

that symbol is inserted at the cursor in the current line in the Session.

Auto Complete

As you start to enter characters in an APL expression, the Auto Complete suggestions

pop-up window (AC for short) offers you a choice based upon the characters you have

already entered and the current context.

For example, if you enter a �, AC displays a list of all the system functions and

variables. If you then enter the character r, the list shrinks to those system functions

and variables beginning with the letter r, namely �refs, �rl, and �rtl. Instead of

entering the remaining characters, you may select the appropriate choice in the AC list.

This is done by pressing the right cursor key or (in PocketAPL) by tapping the choice

in the list.

If you begin to enter a name, AC will display a list of namespaces, variables, functions,

operators that are defined in the current namespace. If you are editing a function, AC

will also include names that are localised in the function header.

If the current space is a GUI namespace, the list will also include Properties, Events

and Methods exposed by that object.

 Chapter 2: The APL Environment 93

As an additional refinement, AC remembers a certain number of previous auto

complete operations, and uses this information to highlight the most recent choice you

made.

For example, suppose that you enter the two characters)c. AC offers you)clear

thru')cs, and you choose)cs from the list. The next time you enter the two

characters)c, AC displays the same list of choices, but this time)cs is pre-selected.

You can disable or customise Auto Completion from the Auto Complete page in the

Configuration dialog box which is described later in this chapter.

Executing an Expression

To execute an expression, you type it into the input line, then press Enter (ER).

Alternatively, you can select Execute from the Action menu. Following execution, the

expression and any displayed results become part of the session log.

Instead of entering a new expression in the input line, you can move back through the

session log and re-execute a previous expression (or line of a result) by simply pointing

at it with the cursor and pressing Enter. Alternatively, you can select Execute from the

Action menu. You may alter the line before executing it. If you do so, it will be

displayed using colour 249 (Red on White), the same as that used for the input line.

When you press Enter the new line is copied to the input line prior to being executed.

The original line is restored and redisplayed in the normal session log colour 250

(Black on White).

An alternative way to retrieve a previously entered expression is to use

Ctrl+Shift+Bksp (BK) and Ctrl+Shift+Enter (FD). These commands cycle backwards

and forwards through the input history, successively copying previously entered

expressions over the current line. When you reach the expression you want, simply

press Enter to re-run it. These operations may also be performed from the Edit menu in

the session window.

Executing Several Expressions

You can execute several expressions, by changing more than one line in the session log

before pressing Enter. Each line that you change will be displayed using colour 249

(Red on White). When you press Enter, these marked lines are copied down and

executed in the order they appear in the log.

Note that you don't actually have to change a line to mark it for re-execution; you can

mark it by overtyping a character with the same character, or by deleting a leading

space for instance.

94 Dyalog APL/W User Guide

It is also possible to execute a contiguous block of lines. To do this, you must first

select the lines (by dragging the mouse or using the keyboard) and then copy them into

the clipboard using Shift+Delete (CT) or Ctrl+Insert (CP). You then paste them back

into the session using Shift+Insert (PT). Lines pasted into the session are always

marked (Red on White) and will therefore be executed when you press Enter. To

execute lines from an edit window, you use a similar procedure. First select the lines

you want to execute, then cut or copy the selection to the clipboard. Then move to the

session window and paste them in, then press Enter to execute them.

Session Print Width (PW)

Throughout its history, APL has used a system variable �PW to specify the width of the

user's terminal or screen. Session output that is longer than �PW is automatically

wrapped and split into multiple lines on the display. This feature of APL was designed

in the days of hard-copy terminals and has become less relevant in modern Windows

environments.

Dyalog APL continues to support the traditional use of �PW, but also provides an

alternative option to have the system wrap Session output according to the width of the

Session Window. This behaviour may be selected by checking the Auto PW checkbox

in the Session tab of the Configuration dialog box.

Using Find/Replace in the Session

The search and replace facilities work not just in the Editor as you would expect, but

also in the Session. For example, if you have just entered a series of expressions

involving a variable called SALES and you want to perform the same calculations

using NEWSALES, the following commands will achieve it :

Enter SALES in the Find box, and NEWSALES in the Replace box. Now click the

Replace All button. You will see all occurrences of SALES change to NEWSALES.

Furthermore, each changed line in the session becomes marked (Red on White). Now

click on the session and press Enter (or select Execute from the Action menu).

Once displayed, the Find or Find/Replace dialog box remains on the screen until it is

either closed or replaced by the other. This is particularly convenient if the same

operations are to be performed over and over again, and/or in several windows. Find

and Find/Replace operations are effective in the window that previously had the focus.

 Chapter 2: The APL Environment 95

Value Tips
If you hover the mouse pointer over a name in the Session or Debugger window, APL

will display a pop-up window containing the value of the symbol under the mouse

pointer.

For example, in the following picture the mouse pointer was moved over the name of

the variable HW in the Session window.

96 Dyalog APL/W User Guide

The next picture illustrates the Value Tip displayed when the mouse is hovered over

the name of the variable MAT.

 Chapter 2: The APL Environment 97

Similarly, if you hover the mouse pointer over the name of a function, the system

displays the body of the function as a pop-up, as illustrated below.

98 Dyalog APL/W User Guide

Configuring Value Tips
You may enable/disable Value Tips and select other options from the General tab of

the Configuration dialog box as shown below.

You may experiment by changing the value of the delay before which Value Tips are

displayed, until you find a comfortable setting.

Note that the colour scheme used to display the Value Tip for a function need not

necessarily be the same colour scheme as you use for the function editor.

 Chapter 2: The APL Environment 99

SharpPlot Graphics

Introduction
Included with Version 12 (32-bit Windows versions only with the Microsoft .Net

Framework Version 2.0 or later installed) is the SharpPlot graphics library which is

part of the RainPro graphics package.

The Version 12.0 Session includes 4 buttons which use SharpPlot to generate simple

graphical pictures of the contents of the Current Object (identified by the name under

or to the left of the cursor).

For example, if you have a numerical matrix in a variable called MAT, you can plot it

by first positioning the cursor on the name MAT in the Session window, and then

clicking one of the 4 graphical buttons in the Session toolbar.

Data Structures
The charting function can plot variables with the following data structures:

• a simple numeric vector

• a vector of simple numeric vectors

• a simple numeric matrix

• a matrix whose first row contains simple character vectors and whose other

elements are simple numerics. In bar and line charts, the column headings in

row 1 are used as x-axis labels.

• a matrix whose first column contains simple character vectors and whose

other elements are simple numerics. In bar and line charts, the row headings in

column 1 are used as legends to annotate the different series.

• a matrix whose first row and first column both contain simple character

vectors and whose other elements are simple numerics. In bar and line charts,

the column headings in row 1 are used as x-axis labels, and the row headings

in column 1 are used as legends annotate the different series.

100 Dyalog APL/W User Guide

Examples

Bar Chart

 Wine_Prices
 1961 1964 1966
 Lafite 8800 1342 1210
 Latour 15400 2357.5 4600
 Margaux 5980 672.5 920
 Mouton Rothschild 6710 713 2070
 Haut-Brion 13225 1840 1323

 Chapter 2: The APL Environment 101

Line Chart

 First_Growths
 1961 1964 1966 1970 1975 1976 1978 ...
 Lafite 8800 1342 1210 605 1380 2070 920 ...
 Latour 15400 2357.5 4600 2760 1552 978 1058 ...
 Margaux 5980 672.5 920 632 900 800 1208 ...

102 Dyalog APL/W User Guide

Implementation
The SharpPlot tools are implemented by four buttons in the Session toolbar. Each

button has a Select callback which runs the function �SE.Chart.DoChart. This

runs �SE.Chart.Do which constructs and then runs a function named

�SE.Chart.MyChart.

�SE.Chart.MyChart uses an instance of the SharpPlot graphics class to produce a

chart of your data, which it saves as a temporary file. It then calls the SharpPlot viewer

to display the file on your screen.

SharpPlot is a library of graphical subroutines, (originally written in APL and machine-

translated into C#) which is implemented as a .Net Namespace named Causeway and

supplied in \bin\sharpplot.dll in the Dyalog program directory.

Notes
For further information, please see

http://www.sharpplot.com/Docs/default.aspx.

Although �SE.Chart.MyChart is overwritten by successive uses of the graphical

buttons, it is deliberately not erased each time. This allows you to use MyChart as a

simple template to develop your own custom graphics function.

The image is stored in Microsoft Enhanced Metafile Format in a temporary file whose

name and location are generated automatically. The system does not delete the

temporary file after use. For further details, See System.IO.Path.GetTempFileName.

The default program used to display the EMF file is SharpView.exe. You can opt

to use a different EMF viewer by setting the Charts\ViewCMD registry key to name

another program, such as Windows Picture and Fax Viewer.

An attempt to plot the contents of a variables with an unsupported data structure (see

above) is handled entirely by error trapping and will result in an error message box and

perhaps messages in the Status window.

 Chapter 2: The APL Environment 103

The Session GUI Hierarchy
As distributed, the Session object �SE contains two CoolBar objects. The first, named

�SE.cbtop runs along the top of the Session window and contains the toolbars. The

second, named �SE.cbbot, runs along the bottom of the Session windows and

contains the statusbars.

The menubar is implemented by a MenuBar object named �SE.mb.

The toolbars in �SE.cbtop are implemented by four CoolBand objects, bandtb1,

bandtb2, bandtb3 and bandtb4 each containing a ToolControl named tb.

The statusbars in �SE.cbbot, are implemented by two CoolBand objects , bandtb1

and bandtb2, each containing a StatusBar named sb.

104 Dyalog APL/W User Guide

The Session MenuBar
The Session MenuBar (�SE.mb) contains a set of menus as follows.

The File Menu
The File menu (�SE.mb.file) provides a means to execute those APL System

Commands that are concerned with the active and saved workspaces. The contents of a

typical File menu and the operations they perform are illustrated below.

 Chapter 2: The APL Environment 105

Item Action Description

New [WSClear] Prompts for confirmation, then clears

the workspace

Open [WSLoad] Prompts for a workspace file name,

then loads it

Copy [WSCopy] Prompts for a workspace file name,

then copies it

Save [WSSave] Saves the active workspace

Save As [WSSaveas] Prompts for a workspace file name,

then saves it

Export [Makeexe] Creates a bound executable, an OLE

Server, an ActiveX Control, or a .Net

Assembly

Export to

Memory

[MakeMemory
Assembly]

Creates an in-memory .Net Assembly

Drop [WSDrop] Prompts for a workspace file name,

then erases it

Print Setup [PrintSetup] Invokes the print set-up dialog box

Continue [Continue] Saves the active workspace in

CONTINUE.DWS and exits APL

Exit [Off] Prompts for confirmation, then exits

APL

File Menu Operations

106 Dyalog APL/W User Guide

Export
The Export… menu item allows you to create a bound executable, an OLE Server (in-

process or out-of-process), an ActiveX Control or a .Net Assembly.

The dialog box used to create these various different files offers selective options

according to the type of file you are making. The system detects which of these types is

most appropriate from the objects in your workspace. For example, if your workspace

contains an ActiveXControl namespace, it will automatically select the ActiveX

Control option.

 Chapter 2: The APL Environment 107

The Create bound file dialog box contains the following fields. These will only be

present if applicable to the type of bound file you are making.

Item Description

File name Allows you to choose the name for your bound file

The name defaults to the name of your workspace

with the appropriate extension.

Save as type Allows you to choose the type of file you wish to

create.

Runtime

application

If this is checked, your application file will be bound

with the Run-Time DLL. If not, it will be bound with

the Development DLL. The latter should normally

only be used to permit debugging.

Console

application

Check this box if you want your executable to run as

a console application. This is appropriate only if the

application has no graphical user interface.

Enable XP Look

and Feel

If checked,.XP Look and Feel will be enabled for

your bound file.

Icon file Allows you to associate an icon with your

executable. Type in the pathname, or use the Browse

button to navigate to an icon file.

Command line For an out-of-process COM Server, this allows you

to specifiy the command line for the process. For a

bound executable, this allows you to specify

command-line parameters for the corresponding

Dyalog APL DLL.

108 Dyalog APL/W User Guide

Pressing the Version button brings up the Version Information dialog box shown

below.

This dialog box allows you to specify versioning information that will be stored in your

bound file.

 Chapter 2: The APL Environment 109

The Edit Menu
The Edit menu (�SE.mb.edit) provides a means to recall previously entered input

lines for re-execution and for copying text to and from the clipboard.

Unicode Edition Classic Edition

Item Action Description

Back [Undo] Displays the previous input line.

Repeated use of this command cycles

back through the input history.

Forward [Redo] Displays the next input line. Repeated

use of this command cycles forward

through the input history.

Clear [Delete] Clears the selected text

Copy [Copy] Copies the selection to the clipboard

Paste [Paste] Pastes the text contents of the clipboard

into the session log at the current

location. The new lines are marked and

may be executed by pressing Enter.

Paste Unicode [Pasteunicode] Same as Paste, but gets the Unicode

text from the clipboard and converts to

�AV. Classic Edition only.

Paste

Non-Unicode

[Pasteansi] Same as Paste, but gets the ANSI text

from the clipboard and converts to

�AV. Classic Edition only.

Find [Find] Displays the Find dialog box

Replace [Replace] Displays the Find/Replace dialog box

Edit menu operations

110 Dyalog APL/W User Guide

The View Menu
The View menu (�SE.mb.view) toggles the visibility of the Session Toolbar,

Statusbar, and Language Bar.

Item Action Description

Toolbar Shows/Hides Session toolbars

Statusbar Shows/Hides Session statusbars

LanguageBar Shows/Hides Language Bar

View menu operations

The Window Menu
This contains a single action (�SE.mb.windows)which is to close all of the Edit and

Trace windows and the Status window.

Item Action Description

Close all Windows [CloseAll] Closes all Edit and Trace windows

Window menu operations

Note that [CloseAll]removes all Trace windows but does not reset the State

Indicator.

In addition, the Windows menu will contain options to switch the focus to any

subsidiary windows that are docked in the Session as illustrated above.

 Chapter 2: The APL Environment 111

The Session Menu
The Session menu (�SE.mb.session) provides access to the system operations that

allow you to load a session (�SE) from a session file and to save your current session

(�SE) to a session file. If you use these facilities rarely, you may wish to move them

to (say) the Options menu or even dispense with them entirely.

Item Action Description

Open [SELoad] Prompts for a session file name, then

loads the session from it, replacing the

current one. Sets the File property of

�SE to the name of the file from which

the session was loaded.

Save [SESave] Saves the current session (as defined

by �SE) to the session file specified by

the File property of �SE.

Save As [SESaveas] Prompts for a session file name, then

saves the current session (as defined by

�SE) in it. Resets the File property of

�SE.

Print Log [PrintLog] Prints the contents of the session log.

Session menu operations

112 Dyalog APL/W User Guide

The Log Menu
The Log menu (�SE.mb.log) provides access to the system operations that

manipulate Session log files.

Item Action Description

New [NewLog] Prompts for confirmation, then

empties the current Session log.

Open [OpenLog] Prompts for a Session log file, then

loads it into memory, replacing the

current Session log

Save [SaveLog] Saves the current Session log in the

current log file, replacing its previous

contents

Save As [SaveLogAs] Prompts for a file name, then saves

the current Session log in it.

Print [PrintLog] Prints the contents of the Session log.

Log menu operations

The Action Menu
The Action menu (�SE.mb.action) may be used to perform a variety of operations

on the current object or the current line. The current object is the object whose name

contains the cursor. The current line is that line that contains the cursor. The Edit, Copy

Object, Paste Object and Print Object items operate on the current object. For

example, if the name SALES appears in the session and the cursor is placed

somewhere within it, SALES is the current object and will be copied to the clipboard

by selecting Copy object or opened up for editing by selecting Edit.

 Chapter 2: The APL Environment 113

Execute runs the current line; Trace traces it.

Unicode Edition Classic Edition

Item Action Description

Edit [Edit] Edit the current object

Trace [Trace] Executes the current line under the

control of the Tracer

Execute [Execute] Executes the current line

Copy Object [ObjCopy] Copies the contents of the current

object to the clipboard.

Paste Object [ObjPaste] Pastes the contents of the clipboard

into the current object, replacing its

previous value

Print Object [ObjPrint] Prints the current object.

Clear Stops [ClearTSM] Clears all �STOP, �MONITOR and

�TRACE settings

Interrupt [Interrupt] Generates a weak interrupt

Reset [Reset] Performs)RESET

Action menu operations

114 Dyalog APL/W User Guide

The Options Menu
The Options menu (�SE.mb.options) provides configuration options.

Item Action Description

Expose GUI

Properties

[ExposeGUI] Exposes the names of properties,

methods and events in GUI

objects

Expose Root

Properties

[ExposeRoot] Exposes the names of the

properties, methods and events of

the Root object

Expose Session

Properties

[ExposeSession] Exposes the names of the

properties, methods and events of

�SE

Line Numbers [LineNumbers] Toggle the display of line

numbers in edit and trace

windows on/off

Configure [Configure] Displays the Configuration dialog

box

Colours [ChooseColors] Displays the Colours Selection

dialog box

Options menu operations

The values associated with the Expose GUI, Expose Root and Expose Session options

reflect the values of these settings in your current workspace and are saved in it.

When you change these values through the Options menu, you are changing them in

the current workspace only.

The default values of these items are defined by the parameters default_wx,

PropertyExposeRoot and PropertyExposeSE which may be set using the Object

Syntax tab of the Configuration dialog.

 Chapter 2: The APL Environment 115

The Threads Menu
The Threads menu (�SE.mb.threads) provides access to various session tools and

dialog boxes.

Item Action Description

Show Threads [Threads] Displays the Threads

Tool

Show Stack [Stack] Displays the SI

Stack window

Show Token Pool [TokenPool] Displays the Token

Pool window

Auto Refresh [ThreadsAutoRefresh] Refreshes the

Threads Tool on

every thread switch

Pause on Error [ThreadsPauseOnError] Pauses all threads on

error

Pause all Threads [ThreadsPauseAll] Pauses all threads

Resume all

Threads

[ThreadsResumeAll] Resumes all threads

Restart all Threads [ThreadsResrartAll] Restarts all threads

Threads Menu Operations

116 Dyalog APL/W User Guide

The Tools Menu
The Tools menu (�SE.mb.tools)provides access to various session tools and dialog

boxes.

Unicode Edition Classic Edition

Item Action Description

Explorer [Explorer] Displays the workspace Explorer tool

Search [WSSearch] Displays the workspace Search tool

Status [Status] Displays or hides the Status window

AutoStatus [AutoStatus] Toggle; if checked, causes the Status

window to be displayed when a new

message is generated for it

Event Viewer [EventViewer] Displays or hides the Event Viewer

Properties [ObjProps] Displays a property sheet for the

current object

Keyboard

Viewer

N/A Displays the APLTeam Keyboard

Viewer. Classic Edition only.

Tools Menu Operations

 Chapter 2: The APL Environment 117

The Help Menu
The Help menu (�SE.mb.help) provides access to the help system which is

packaged as a single Microsoft HTML Help compiled help file named

help\dyalog.chm.

Label Action Description

Documentation

Center

[DocCenter] Opens your web browser on

help\index.html which displays an index to

the on-line PDF documentation and selected

internet links.

Latest

Enhancements

[RelNotes] Opens help\dyalog.chm, starting at the first

topic in the Version 12.0 Release Notes

section. Note that the Version 11.0 Release

Notes are also included for your

convenience.

Language Help [LangHelp] Opens help\dyalog.chm, starting at the first

topic in the Language Reference section.

Gui Help [GuiHelp] Opens help\dyalog.chm, starting at the first

topic in the Object Reference section.

Dyalog Web

Site

[DyalogWeb] Opens your web browser on the Dyalog

home page.

Email Dyalog [DyalogEmail] Opens your email client and creates a new

message to Dyalog Support, with

information about the Version of Dyalog

APL you are running.

About Dyalog

APL

[About] Displays an About dialog box

Help menu operations

118 Dyalog APL/W User Guide

Session Pop-Up Menu
The Session popup menu (�SE.popup) is displayed by clicking the right mouse

button anywhere in the Session window. If the mouse pointer is over a visible object

name, the popup menu allows you to edit, print, delete it or view its properties. Note

that the name of the pop-up menu is specified by the Popup property of �SE.

Unicode Edition Classic Edition

 Chapter 2: The APL Environment 119

Item Action Description

Edit [Edit] Edits the current object

Print [ObjPrint] Prints the current object

Delete [ObjDelete] Erases the current object

Properties [GUIHelp] Displays the Object Properties dialog

box for the current object

Help [Help] Displays the help topic associated with

the current object or the APL symbol

under the cursor

Line Numbers [LineNumbers] Toggles line numbers on/off

Copy [Copy] Copies the selection to the clipboard

Paste [Paste] Pastes the text contents of the clipboard

into the session log at the current

location. The new lines are marked and

may be executed by pressing Enter.

Paste Unicode [Pasteunicode] Same as Paste, but gets the Unicode

text from the clipboard and converts to

�AV. Classic Edition only.

Paste

Non-Unicode

[Pasteansi] Same as Paste, but gets the ANSI text

from the clipboard and converts to

�AV. Classic Edition only.

Explorer [Explorer] Displays the Workspace Explorer

Search [WSSearch] Displays the Find Objects tool

Event Viewer [EventViewer] Displays the Event Viewer

Threads [Threads] Displays the Threads Tool

Status [Status] Displays the Status window

Colours [ChooseColors] Displays the Colour Selection dialog

Interrupt [Interrupt] Generates a weak interrupt

Session popup menu operations

120 Dyalog APL/W User Guide

The Session Toolbars
The Session toolbars are contained by four separate CoolBand objects, allowing you to

configure their order in whichever way you choose.

The Session tool bars

The bitmaps for the buttons displayed on the session tool bar are implemented by three

ImageList objects owned by the CoolBar �SE.cbtop. These represent the

ToolButton images in their normal, highlighted and inactive states and are named iln,

ilh and ili respectively.

These images derive from three bitmap resources contained in dyalog.exe named

tb_normal, tb_hot and tb_inactive. The statements that create these

ImageList object in function BUILD_SESSION in BUILDSE.DWS are as follows.

:With '�SE.cbtop'
 'iln'�WC'ImageList'('MapCols' 0)('Masked' 1)
 'iln.bm'�WC'Bitmap'('' 'tb_normal')('MaskCol'(192 192 192))
 'ilh'�WC'ImageList'('MapCols' 0)('Masked' 1)
 'ilh.bm'�WC'Bitmap'('' 'tb_hot')('MaskCol'(192 192 192))
 'ili'�WC'ImageList'('MapCols' 0)('Masked' 1)
 'ili.bm'�WC'Bitmap'('' 'tb_inactive')('MaskCol'(192 192 192))
:EndWith

 Chapter 2: The APL Environment 121

Workspace (WS) Operations

Executes the system operation [WSClear] which

asks for confirmation, then clears the workspace.

Executes the system operation [WSLoad] which

displays a file selection dialog box and loads the

selected workspace.

Executes the system operation [WSCopy] which

displays a file selection dialog box and copies the

(entire) selected workspace.

Executes the system operation [WSSaveas]

which displays a file selection dialog box and saves

the workspace in the selected file.

Executes the system operation [REExport]

which re-exports the workspace using the settings,

parameters and options that were previously

selected using the Create Bound File dialog.

Executes the system operation [PrintFnsInNS]

that prints all the functions and operators in the

current namespace.

Clear Workspace

Load Workspace

Copy Workspace

Save Workspace

Re-Export Workspace

Print Workspace

122 Dyalog APL/W User Guide

Object Operations

Executes the system operation [ObjCopy] which

copies the contents of the current object to the

clipboard.

Executes the system operation [ObjPaste]

which copies the contents of the clipboard into the

current object, replacing its previous value.

Executes the system operation [ObjPrint] that

prints the current object.

Executes the system operation [Edit] which

edits the current object using the standard system

editor.

Executes a defined function in �SE that edits the

current object (which must be numeric) using a

spreadsheet like interface based upon the Grid

object.

Copy Object

Paste Object

Print Object

Edit Object

Edit Numbers

 Chapter 2: The APL Environment 123

Executes a defined function in �SE that displays

the value of the current object in a Barchart.

Executes a defined function in �SE that that

displays the value of the current object in a

Linechart.

Executes a defined function in �SE that that

displays the value of the current object in a

Piechart.

Executes a defined function in �SE that that

displays the value of the current object in a

Scatterplot.

Barchart

Linechart

Piechart

Scatterplot

124 Dyalog APL/W User Guide

Tools

Executes the system operation [Explorer]

which displays the workspace Explorer tool.

Executes the system operation [WSSearch]

which displays the workspace Search tool.

Executes the system operation [LineNumbers]

which toggles the display of line numbers in edit

and trace windows on and off.

Executes the system operation [ClearTSM]

which clears all �STOP, �MONITOR and �TRACE

settings

Explorer

Search

Line Numbers

Clear all Stops

 Chapter 2: The APL Environment 125

Edit Operations

Executes the system operation [Copy] which

copies the selected text to the clipboard.

Executes the system operation [Paste] which

pastes the text in the clipboard into the current

window at the insertion point.

Executes the system operation [Undo]which

recalls the previous input line from the input

history stack.

Executes the system operation [Redo]which

recalls the next input line from the input history

stack.

Copy Selection

Paste Selection

Recall Last

Recall Next

126 Dyalog APL/W User Guide

Session Operations

Executes the system operation [SELoad] which

displays a file selection dialog box and loads the

selected Session File.

Selects the font to be used in the Session window.

Selects the size of the font to be used in the Session

window.

Load Session

Select Font

Select Font Size

 Chapter 2: The APL Environment 127

The Session Status Bar
The session status bar is represented by two CoolBands each of which contains a

StatusBar object. There are a number of StatusFields as illustrated below. Your own

status bar may be configured differently.

Classic Edition

Unicode Edition

The StatusField objects owned by the session StatusBar may have special values of

Style, which are used for operations relevant only to the Session. These styles are

summarised in the tables shown below.

StatusField Style Description

hint None Displays hints for the session objects, or

"Ready..." when APL is waiting for input

insrep InsRep Displays the mode of the Insert key (Ins or Rep)

mode KeyMode Displays the keyboard mode. This is applicable

only to a multi-mode keyboard. The text

displayed is defined by the Mn= string in the

Input Table. Classic Edition Only.

num NumLock Indicates the state of the Num Lock key. Displays

"NUM" if Num Lock is on, blank if off.

caps CapsLock Indicates the state of the Caps Lock key. Displays

"Caps" if Caps Lock is on, blank if off.

pause Pause Displays a flashing red "Pause" message when

the Pause key is used to halt session output

Session status fields : first row

128 Dyalog APL/W User Guide

StatusField Style Description

curobj CurObj Displays the name of the current object (the name

last under the input cursor)

tc ThreadCount Displays the number of threads currently running

(minimum is 1)

dqlen DQLen Displays the number of events in the APL event

queue

trap Trap Turns red if �TRAP is set

si SI Displays the length of �SI. Turns red if non-

zero

io IO Displays the value of �IO. Turns red if �IO is

not equal to the value of the default_io parameter

ml ML Displays the value of �ML. Turns red if �ML is

not equal to the value of the default_ml

parameter

Session status fields : second row

Toggle Status Fields
In the default Session files distributed with this release, the Statusfields used to display

the value of �IO, the state of the Insert key (Ins/Rep) and the current keyboard mode

(e.g. Apl/Uni) have callback functions attached to MouseDblClick. This means that

you can toggle the state of these fields by double-clicking with the left mouse button.

If you dislike this behaviour, you may set the Event property of the Statusfields to 0

and re-save the Session file. Alternatively, you may modify BUILDSE.DWS and

rebuild the Session from scratch.

 Chapter 2: The APL Environment 129

The Configuration Dialog Box

General Tab

130 Dyalog APL/W User Guide

Label Parameter Description

Show line

numbers

lines_on_functions Determines whether or not line

numbers are shown in edit/trace

windows

Recently used

file list size

file_stack_size Specifies the number of the most

recently used workspaces

displayed in the File menu.

Display Value

Tips after

ValueTips/Delay Specifies the delay before APL

will display the value of a variable

or the code for a function when the

user hovers the mouse over its

name.

Colour Scheme ValueTips/

ColourScheme

Specifies the colour scheme used

to display the value of a variable

or the code for a function when the

user hovers the mouse over its

name.

Enable XP Look

and Feel

XPLookAndFeel See below.

Apply XP Look

and Feel to

docked captions

XPLookAndFeelDocker Specifes whether or not XP Look

and Feel is honoured when

drawing the title bars of docked

windows, including docked

Session windows.

Configuration

saved in

inifile Specifies the full pathname of the

registry folder used by APL

Configuration dialog: General

XPLookandFeel

If you check the XPLookandFeel option box and close the Options dialog by pressing

OK, APL creates a MANIFEST file. This is a file with the same name as the Dyalog

executable program (normally, dyalog.exe) with the addition of a .manifest

suffix (normally, dyalog.exe.manifest). If you clear the option box and click

OK, the manifest file is deleted.

The presence or absence of this file determines whether or not XP Look and Feel is

used for Session windows.

 Chapter 2: The APL Environment 131

Unicode Input Tab (Unicode Edition Only)
Unicode Edition can optionally select your APL keyboard each time you start APL.

To choose this option, select one of your installed APL keyboards, enable the Activate

selected keyboard checkbox, then click OK

Configuration dialog: Unicode Input

Label Parameter Description

Activate

selected

keyboard

InitialKeyboardLayoutInUse 1 = automatically select the specified

APL keyboard on start-up.

0 = no action

Keyboard InitialKeyboardLayout the name of the APL keyboard to be

selected.

132 Dyalog APL/W User Guide

Input Tab (Classic Edition Only)

Label Parameter Description

Input table

search path

aplkeys A list of directories to be searched for the specified

input table

Input table

file

aplk The name of the input table file (.DIN)

Configuration dialog: Keyboard

 Chapter 2: The APL Environment 133

Output Tab

Label Parameter Description

Output table

search path

apltrans A list of directories to be searched for the specified

output table

Output table

file

aplt The name of the output table file (.DOT)

Configuration dialog: Output

134 Dyalog APL/W User Guide

Keyboard Shortcuts Tab

To alter the keystroke associated with a particular action, simply select the action

required and press the keystroke. For example, to change the keystroke associated with

the action <UA> (undo all changes) from (None) to Ctrl+Shift+u, simply select the

corresponding row in the list and press Ctrl+Shift+u. If Confirm before Overwrite is

checked, you will be prompted to confirm or cancel before each and every change is

written back to the registry.

 Chapter 2: The APL Environment 135

Workspace Tab

Label Parameter Description

Workspace

search path

wspath A list of directories to be searched for the specified

workspace when the user executes

)LOAD wsname

Maximum

workspace

size(kB)

maxws The maximum size of the workspace in KB. Default is

16384.

Configuration dialog: Workspace

136 Dyalog APL/W User Guide

Network Tab

 Chapter 2: The APL Environment 137

Label Parameter Description

Network ID aplnid A number that uniquely identifies the user for

component file system access control

Default File_Control (2) Specifies that the component file system uses file

locking to control multi-user access

FSCB in file File_Control (1) Specifies that the component file system uses a

file-based FSCB to control multi-user access

FSCB in

memory

File_Control (0) Specifies that the component file system uses a

memory-based FSCB to control multi-user access

Configuration dialog: Workspace

138 Dyalog APL/W User Guide

Windows Tab

 Chapter 2: The APL Environment 139

Label Parameter Description

Width edit_cols The maximum number of rows displayed in a new edit

window

Height edit_rows The maximum number of columns displayed in a new

edit window

X Pos edit_first_x The initial horizontal position in characters of the first

edit window relative to the Session window

Y Pos edit_first_y The initial vertical position in characters of the first

edit window relative to the Session window

X Offset edit_offset_x The initial horizontal position in characters of the

second and subsequent edit windows relative to the

previous one

Y Offset edit_offset_y The initial vertical position in characters of the second

and subsequent edit windows relative to the previous

one

Configuration dialog: Windows (Edit Windows)

Label Parameter Description

X Pos trace_first_x The initial horizontal position in characters of the first

trace window relative to the Session window

Y Pos trace_first_y The initial vertical position in characters of the first

trace window relative to the Session window

X Offset trace_offset_x The initial horizontal position in characters of the

second and subsequent trace windows relative to the

previous one

Y Offset trace_offset_y The initial vertical position in characters of the second

and subsequent trace windows relative to the previous

one

Configuration dialog: Windows (Trace Windows)

Label Parameter Description

Width sm_cols The width of the �SM and prefect windows

Height sm_rows The height of the �SM and prefect windows

Configuration dialog: Windows (QuadSM Window)

140 Dyalog APL/W User Guide

Session Tab

 Chapter 2: The APL Environment 141

Label Parameter Description

�IO default_io The default value of �IO in a Clear WS.

�ML default_ml The default value of �ML in a Clear WS.

�PP default_pp The default value of �PP in a Clear WS.

�RTL default_rtl The default value of �RTL in a Clear WS.

�RL default_rl The default value of �RL in a Clear WS.

�DIV default_div The default value of �DIV in a Clear WS.

�WX default_wx The default value of �WX in a Clear WS.

Auto PW auto_pw If checked, the value of �PW is dynamic and depends

on the width of the Session Window.

Session

file

session_file The name of the Session file in which the definition of

your session (�SE) is stored.

Configuration dialog: Session

142 Dyalog APL/W User Guide

Log Tab

 Chapter 2: The APL Environment 143

Label Parameter Description

Use Session

log file

log_file_inuse Specifies whether or not the Session log

is saved in a session log file

Use Session

log file

log_file The full pathname of the Session log file

Confirm on

Deletion

from Session

log

confirm_session_delete Specifies whether or not you are

prompted to confirm the deletion of a line

from the Session (and Session log).

Session log

size(Kb)

log_size The size of the Session log buffer in Kb

Input buffer

size(Kb)

input_size The size of the buffer used to store

marked lines (lines awaiting execution) in

the Session

History

size(Kb)

history_size The size of the buffer used to store

previously entered (input) lines in the

Session

PFKey

buffer

size(Kb)

pfkey_size The size of the buffer used to store PFKey

definitions (�PFKEY)

Configuration dialog: Log

144 Dyalog APL/W User Guide

Trace/Edit Tab

 Chapter 2: The APL Environment 145

Label Parameter Description

Classic

Dyalog mode

ClassicMode Selects pre-Version 9 behaviour for Edit

and Trace windows

Allow

floating edit

windows

DockableEditWindows Allows individual Edit windows to be

undocked from (and re-docked in) the

main Edit window

Independent

trace stack

IndependentTrace Specifies whether or not the Trace

windows are child windows of the Session.

Single trace

window

SingleTrace Specifies whether or not there is a single

Trace window

Show status

bars

StatusOnEdit Specifies whether or not status bars are

displayed along the bottom of individual

Edit windows

Show tool

bars

ToolBarsOnEdit Specifies whether or not tool bars are

displayed along the top of individual Edit

windows

Show trace

stack on error

Trace_on_error Specifies whether or not the Tracer is

automatically invoked when an error or

stop occurs in a defined function

Warn if trace

stack bigger

than

Trace_level_warn Specifies the maximum stack size for

automatic deployment of the Tracer.

Confirm on

edit window

close

confirm_close Specifies whether or not a confirmation

dialog is displayed if the user alters the

contents of an edit window, then closes it

without saving

Confirm on

edit window

fix

confirm_fix Specifies whether or not a confirmation

dialog is displayed if the user alters the

contents of an edit window, then saves it

using Fix or Exit

Confirm on

edit window

abort

confirm_abort Specifies whether or not a confirmation

dialog is displayed if the user alters the

contents of an edit window, then aborts

using

Autoformat

functions

AutoFormat Selects automatic indentation for Control

Structures when function is opened for

editing

146 Dyalog APL/W User Guide

Label Parameter Description

Autoindent

functions

AutoIndent Selects semi-automatic indentation for

Control Structures while editing

Double-click

to Edit

DoubleClickEdit Specifies whether or not double-clicking

over a name invokes the editor

Paste text as

Unicode

UnicodeToClipboard Specifies whether or not text transferred to

and from the Windows clipboard is to be

treated as Unicode

Tab stops

every

TabStops The number of spaces inserted by pressing

Tab in an edit window

Configuration dialog: Trace/Edit

Auto Complete Tab

 Chapter 2: The APL Environment 147

Label Parameter Description

Use Auto

Complete

Enabled Specifies whether or not Auto Completion is

enabled.

Make

suggestions

after

PrefixSize Specifies the number of characters you must

enter before Auto Completion begins to make

suggestions

Suggest up to Rows Specifies the maximum number of rows (height)

in the AutoComplete pop-up suggestions box.

Show up to Cols Specifies the maximum number of columns

(width) in the AutoComplete pop-up suggestion

box

Keep History History Specifies whether or not AutoComplete

maintains a list of previous AutoCompletions.

History Length HistorySize Specifies the number of previous

AutoCompletions that are maintained

Include

filenames

ShowFiles Specifies whether or not AutoCompletion

suggests directory and file names for)LOAD,

)COPY and)DROP system commands.

OK Key CompleteKey1

CompleteKey2

Specifies two possible keys that may be used to

select the current option from the Auto

Complete suggestion box.

Cancel Key CancelKey1

CancelKey2

Specifies two possible keys that may be used to

cancel (hide) the Auto Complete suggestion

box.

Common Key CommonKey1 Specifies the key that will auto-complete the

common prefix. This is defined to be the longest

string of leading characters in the currently

selected name that is shared by at least one other

name in the Auto Complete suggestion box..

Configuration dialog: Auto Complete

Note: To enter values in the OK Key and Cancel Key fields, click on the field with the

mouse and then press the desired keystroke.

148 Dyalog APL/W User Guide

SALT
SALT is the Simple APL Library Toolkit, a simple source code management system

for Classes and script-based Namespaces. SPICE uses SALT to manage development

tools which “plug in” to the Dyalog session

 Chapter 2: The APL Environment 149

Label Parameter Description

Enable

Salt

AddSALT Specifies whether or not SALT is enabled

Enable

Spice

AddSPICE Specifies whether or not SPICE is enabled. Note that

SPICE cannot be enabled without SALT.

Compare

command

line

CompareCMD The command line for a 3
rd

 party file comparison tool to

be used to compare two versions of a file. See note.

Editor Editor Name of the program to be used to edit script files (default

"Notepad").

Class

source

folders

SourceFolder Sets the SALT working directory; a list of folders to be

searched for source code.

Configuration dialog: SALT

150 Dyalog APL/W User Guide

Object Syntax Tab

 Chapter 2: The APL Environment 151

Label Parameter Description

Expose

properties of

GUI

Namespaces

default_wx Specifies the value of �WX in a clear

workspace. This in turn determines

whether or not the names of properties,

methods and events of GUI objects are

exposed. If set (�WX is 1), you may

query/set properties and invoke methods

directly as if they were variables and

functions respectively. As a consequence,

these names may not be used for global

variables in GUI objects.

Expose

properties of

Root

PropertyExposeRoot Specifies whether or not the names of

properties, methods and events of the

Root object are exposed. If set, you may

query/set the properties of Root and

invoke the Root methods directly as if

they were variables and functions

respectively. As a consequence, these

names may not be used for global

variables in your workspace.

Expose

properties of

Session

Namespace

PropertyExposeSE Specifies whether or not the names of

properties, methods and events of the

Session object are exposed. If set, you

may query/set the properties of �SE and

invoke �SE methods directly as if they

were variables and functions respectively.

As a consequence, these names may not

be used for global variables in the �SE

namespace.

Configuration dialog: Object Syntax

The Object Syntax tab of the Configuration dialog is used to set your default

preferences for Object Syntax.

The Object Syntax settings for the current workspace are reflected by the Object

Syntax submenu of the Options menu. Use Options/Object Syntax to change them.

These settings are saved in the workspace.

152 Dyalog APL/W User Guide

Colour Selection Dialog

The Colour Selection dialog box allows you to select colours for:

• Syntax colouring

• Edit, Trace and Session windows

• Status window

The colour selection dialog box is selected by the [ChooseColor] system action

which by default is attached to the Options/Colours menu item on the Session menubar

and to the Colours menu item in the Session pop-up menu.

 Chapter 2: The APL Environment 153

Syntax Colouring
Syntax colouring allows you to visually identify various components in the function

edit and session windows by assigning different colours to them, such as:

• Global references (functions and variables)

• Local references (functions and variables)

• Primitive functions

• System functions

• Localised System Variables

• Comments

• Character constants

• Numeric constants

• Labels

• Control Structures

• Unmatched parentheses, quotes, and braces

Schemes
You may define a number of different syntax colouring schemes which are suitable for

different purposes and a selection of schemes is provided. Choose the scheme you wish

to use from the Combo box provided. If you change a colour allocation, you may

overwrite an existing Colour Scheme or define a new one by clicking Save As and then

entering the name of the Scheme. You may delete a Colour Scheme using the Delete

button.

Changing Colours
To allocate a colour to a syntax element, you must first select the syntax element. You

may select a syntax element from the Combo box provided, or by clicking on an

example in the sample function provided. Having selected a syntax element, choose a

colour using the Foreground or Background selectors as appropriate.

Show Idioms
The Show Idioms checkbox allows you to choose whether or not idioms are to be

identified by syntax colouring.

Single Background
The Single Background checkbox allows you to choose whether to impose a single

background colour, or to allow the use of different background colours for different

syntax elements.

154 Dyalog APL/W User Guide

Function Editor
Check this box if you want to enable syntax colouring in Edit windows.

Session Input
Check this box if you want to enable syntax colouring in the Session window. Note

that the colour scheme used for the Session may differ from the colour scheme selected

for Edit windows and is specified by the Session Colour Scheme box on the

Session/Trace tab.

Only current input line
This option only applies if Session syntax colouring is enabled. Check this box if you

want syntax colouring to apply only to the current input line. Clear this box, if you

want to apply syntax colouring to all the input lines in the current Session window.

Note that syntax colouring of input lines is not remembered in the Session log, so input

lines from previous sessions do not have syntax colouring.

HotKeys
You may associate different hot key with any or all of your colour schemes.

When you depress a hot key over a function in an Edit window, the function is

displayed using the scheme associated with the hot key. Releasing the hot key causes it

to be displayed in the normal scheme.

This feature is intended to allow you to quickly check for certain syntax elements. For

example, you may define a special scheme that only highlights global names and

associate a hot key with it. Pressing the hot key will temporarily highlight the globals

for you.

To associate a hot key with a colour scheme, click on the Hotkey field, and then make

the desired keystroke. To disassociate a hot key, use <backspace>.

 Chapter 2: The APL Environment 155

Print Configuration Dialog Box
The Print Configuration dialog box is displayed by the system operation [PrintSetup]

that is associated with the File/Print Setup menu item. It is also available from Edit

windows and from the Workspace Explorer and Find Objects tools.

There are four separate tabs namely Setup, Margins, Header/Footer and Printer.

Note that the printing parameters are stored in the Registry in the Printing sub-folder

Setup Tab

156 Dyalog APL/W User Guide

Label Parameter Description

Color scheme InColour Check this box if you want to print functions with

syntax colouring. Note that that printing in colour

is slower than printing without colour.

Color scheme SchemeName Select the colour scheme to be used for printing.

This text WrapWithText Check this option button if you wish to prefix

wrapped lines (lines that exceed the width of the

paper) with a particular text string

This text WrapLeadText Specifies the text for prefixing wrapped lines

This many

spaces

WrapWithSpaces Check this option button if you wish to prefix

wrapped lines with spaces.

This many

spaces

WrapLeadSpaces Specifies the number of spaces to be inserted at

the beginning of wrapped lines.

Line numbers

on functions

LineNumsFns Check this box if you want line numbers to be

printed in defined functions.

Line numbers

on variables

LineNumsVars Check this box if you want line numbers to be

printed in variables. If you choose this option, line

numbering starts at �IO.

Font Font Click to select the font to be used for printing.

Note that only fixed-pitch fonts are supported.

 Chapter 2: The APL Environment 157

Margins Tab

Label Parameter Description

Use margins UseMargins Check this box if you want margins to apply

Left margin MarginLeft Specifies the width of the left margin

Right margin MarginRight Specifies the width of the right margin

Top margin MarginTop Specifies the height of the top margin

Bottom

margin

MarginBottom Specifies the height of the bottom margin

Inches MarginInch Specifies that the margin units are inches

Centimetres MarginCM Specifies that the margin units are centimetres

158 Dyalog APL/W User Guide

Header/Footer Tab

 Chapter 2: The APL Environment 159

Label Parameter Description

Header DoHeader Specifies whether or not a header is printed at the

top of each page

Header HeaderText The header text

Footer DoFooter Specifies whether or not a footer is printed at the

bottom of each page

Footer FooterText The footer text

Prefix

functions

with

DoSepFn Specifies whether or not text is printed before

each defined function

Prefix

functions

with

SepFnText The text to be printed before each defined

function. This can include its name, timestamp

and author

Prefix

variables

with

DoSepVar Specifies whether or not text is printed before

each variable.

Prefix

variables

with

SepVarText The text to be printed before each variable. This

can include its name.

Prefix other

objects with

DoSepOther Specifies whether or not text is printed before

other objects. These include locked functions,

external functions, �NA functions, derived

functions and namespaces.

Prefix other

objects with

SepOtherText The text to be printed before other objects. This

can include its name.

160 Dyalog APL/W User Guide

The specification for headers and footers may include a mixture of your own text, and

keywords which are enclosed in braces, e.g. {objname}. Keywords act like variables

and are replaced at print time by corresponding values.

Any of the following fields may be included in headers, footers and separators.

{WSName} {WS} Workspace name

{NSName} {NS} Namespace name

{ObjName} {OB} Object name

{Author} {AU} Author

{FixDate} {FD} Date function was last fixed

{FixTime} {FT} Time function was fixed

{PrintDate} {PD} Today's date

{PrintTime} {PT} Current time

{CurrentPage} {CP} Current page number

{TotalPages} {TP} Total number of pages

{RightJustify} {RJ} Right-justifies subsequent text/fields

{HorizontalLine} {HL} Inserts a horizontal line

{CarriageReturn} {CR} Inserts a new-line

For example, the specification :

Workspace: {wsname} {objname} {rj} Printed {PrintTime} {PrintDate}

would cause the following header, footer or separator to be printed at the appropriate

position in each page of output:

Workspace: U:\WS\WDESIGN WIZ_change_toolbar Printed 14:40:11 02 March

1998

 Chapter 2: The APL Environment 161

Printer Tab

Label Parameter Description

Name PrinterField The name of the printer to be used for printing

from Dyalog APL.

Properties Click this to set Printer options.

Where Reports the printer device

Print Allows you to choose between printing all of the

current object or just the selection. Note that this

option is present only when the dialog box is

displayed in response to selecting Print.

162 Dyalog APL/W User Guide

Status Window
The Status window is used to display system messages and supplementary information.

These include the operations that take place when you register an OLEServer or

ActiveXControl.

The Status window is also used to display supplementary information about errors. For

example, if in a �WC statement you misspell the type of an object, you will get a

suitable error message in the Status window, in addition to the DOMAIN ERROR

message in the Session.

Example

 'F'�WC'FROM' & Should be 'FORM'
DOMAIN ERROR
 'F'�WC'FROM'
 :

The Status window can be explicitly displayed or hidden using the [Status] system

operation which is associated with the Tools/Status menu item.

There is also an option to have the Status window appear automatically whenever a

new message is written to it. This option is selected using the [AutoStatus] system

operation which is associated with the Tools/AutoStatus menu item.

Note that when you close the Status window, all the system messages in it are cleared.

 Chapter 2: The APL Environment 163

The Workspace Explorer Tool
The Explorer tool is a modeless dialog box that may be toggled on and off by the

system action [Explorer]. In a default Session, this is attached to a MenuItem in

the Tools menu and a Button on the session toolbar.

The Explorer contains two sub-windows. The one on the left displays the namespace

structure of your workspace using a TreeView. The right-hand window is a ListView

that displays the contents of the namespace that is selected in the TreeView.

The Explorer is closely modelled on the Windows Explorer in Windows and the

facilities it provides are very similar. For Windows users, the operation of this tool is

probably self-explanatory. However, other users may find the following discussion

useful.

164 Dyalog APL/W User Guide

Exploring the Workspace
The TreeView displays the structure of your workspace. Initially it shows the root and

Session namespaces # and �SE. The icon for # is open indicating that its contents are

those that appear in the ListView. You can expand or collapse the TreeView of the

workspace structure by clicking on the mini-buttons (labelled + and -) or by double-

clicking the icons. A single click on a closed namespace icon opens it and causes its

contents to be displayed in the ListView. Another way to open a namespace is to

double-click its icon in the ListView. Only one namespace can be open at a time. The

icons used in the display are described below.

Class

Namespace (closed)

GUI Namespace (closed)

Namespace (open)

GUI Namespace (open)

Function

Variable

Operator

 Indicates an object that has been erased

 Chapter 2: The APL Environment 165

Viewing and Arranging Objects
The ListView displays the contents of a namespace in one of four different ways

namely Large Icon view, Small Icon view, List view or Details view. You can switch

between views using the View menu or the tool buttons that are provided. In the first

three views, the system displays the name of the object together with an icon that

identifies its type. In Details view, the system displays several columns of additional

information. You may resize the column widths by dragging or double-clicking the

lines in the header. To hide a column, drag its width to the far left. The additional

columns are:

Location This is the namespace containing the object. By definition, this is the

same for all of the objects shown in the ListView and is normally

hidden

Description For a function or operator, this is the function header stripped of

localised names and comment. For a variable, the description

indicates its rank, shape and data type. For a namespace, the

description indicates the nature of the namespace; a plain namespace

is described as namespace, a GUI Form object is described as Form,

and so forth.

Size The size of the object as reported by �SIZE.

Modified on For functions and operators, this is the timestamp when the object

was last fixed. For other objects this field is empty.

Modified by For functions and operators, this is the name of the user who last

fixed the object. For other objects this field is empty.

In any view, you may arrange the objects in ascending order of name, size, timestamp

or class by clicking the appropriate tool button. In Details view, you may sort in

ascending or descending order by clicking on the appropriate column heading. The first

click sorts in ascending order; the second in descending order.

166 Dyalog APL/W User Guide

Moving and Copying Objects
You can move and copy objects from one namespace to another using drag-drop or

from the Edit menu.

To move one or more objects using drag-and-drop editing:

1. Select the objects you want to move in the ListView.

2. Point to one of the selected objects and then press and hold down the left

mouse button. When the drag-and-drop pointer appears, drag the object(s) to

another namespace in the TreeView. To indicate which of the namespaces is

the current target, its name will be highlighted as you drag the selected

object(s) over the TreeView.

3. Release the mouse button to drop the objects into place. The objects will

disappear from the ListView because they have been moved to another

namespace.

To copy one or more objects using drag-and-drop editing, the procedure is the same

except that you must press and hold the Ctrl key before you release the mouse button.

You may also move and copy objects using the Edit menu. To do so, select the

object(s) and then choose Move or Copy from the Edit menu. You will be prompted for

the name of the namespace into which the objects are to be moved or copied. Enter the

namespace and click OK.

Editing and Renaming Objects
You can open up an edit window for a function or variable by double-clicking its icon,

or by selecting it and choosing Edit from the Edit menu or from the popup menu. You

may rename an object by clicking its name (as opposed to its icon) and then editing this

text. You may also select the object and choose Rename from the Edit menu or from

the popup menu. Note that when you rename an object, the original name is discarded.

Unlike changing a function name in the editor, this is not a copy operation.

 Chapter 2: The APL Environment 167

Using the Explorer as an Editor
If you open the Fns/Ops item, the names of the functions and operators in the

namespace are displayed below it alphabetically in the left (tree view) pane. When you

select one of these names, the function itself is opened in the right (list view) pane.

You may use this feature to quickly cycle through the functions (or variables) in a

namespace, pressing cursor up and cursor down in the left (tree view) pane to move

from one to another.

You may also edit the function directly in the right (list view) pane before moving on

to another.

168 Dyalog APL/W User Guide

The File Menu

The File menu, illustrated above, provides the following actions. All but Print setup

and Close act on the object or objects that are currently selected in the ListView.

Print Prints the object(s).

Print setup Displays the Print Configuration dialog box.

Delete Erases the object(s).

Rename Renames the object. This option only applies when a single object is

selected.

Properties Displays a property sheet; one for each object that is selected.

Close Closes the Explorer

 Chapter 2: The APL Environment 169

The Edit Menu

The Edit menu, illustrated above, provides the following actions. The Edit, Copy and

Move operations act on the object or objects that are currently selected in the ListView.

Edit Opens an edit window for each of the objects selected.

Copy Prompts for a namespace and copies the object(s) there.

Move Prompts for a namespace and moves the object(s) there.

Select Functions Selects all of the functions and operators in the ListView.

Select Variables Selects all of the variables in the ListView.

Select None Deselects all of the objects in the ListView.

Select All Selects all of the objects in the ListView.

Invert Selection Deselects the selected objects and selects all those that were

not selected.

The Columns Menu

The Columns menu, illustrated above, allows you to choose which columns are to be

displayed.

170 Dyalog APL/W User Guide

The View Menu

The View menu, illustrated above, provides the following actions.

Toolbar Displays or hides the Explorer toolbar.

Toolbar Captions Displays or hides the button captions on the Explorer

toolbar.

StatusBar Displays or hides the Explorer statusbar.

Type Libraries Enables/disables the exploring of Type Libraries

Large Icons Selects Large Icon view in the ListView.

Small Icons Selects Small Icon view in the ListView.

List Icons Selects List view in the ListView.

Details Selects Details view in the ListView.

Scope Allows you to choose whether the Explorer displays objects

in local scope or in global scope.

Expand All Expands all namespaces and sub-namespaces in the

TreeView, providing a complete view of the workspace

structure, including or excluding the Session object �SE.

Arrange Icons Sorts the items in the ListView by name, type, size or date.

Line up Icons Rearranges the icons into a regular grid..

 Chapter 2: The APL Environment 171

Refresh Now Redisplays the TreeView and ListView with the current

structure and contents of the workspace. Used if Auto

Refresh is not enabled.

Auto Refresh Specifies whether or not the Explorer immediately reflects

changes in the active workspace.

If Auto Refresh is checked the Explorer is updated every time APL returns to desk-

calculator mode. This means that it is always in step with the active workspace. If you

have a large number of objects displayed in the Explorer, the update may take a few

seconds and you may wish to prevent this by un-checking this menu item If you do so,

the Explorer must be explicitly updated by selecting the Refresh Now action.

The Tools Menu

The Tools menu, illustrated above, provides the following actions.

Find Displays the Find Objects Tool

Go to Prompts for a namespace and then opens that namespace in

the TreeView, displaying its contents in the ListView

Go to Session Space Opens the namespace in the TreeView control

corresponding to the current space in the Session.

Set Session Space Sets the current space in the Session to be the namespace

that is currently open in the TreeView.

172 Dyalog APL/W User Guide

Browsing Classes

Classes are represented by icons. The picture below shows 3 classes: Bird,

Parrot and DomesticParrot.

If you open Class nodes in the left-hand pane, the Explorer shows the Class hierarchy.

In this example, DomesticParrot is based upon Parrot which in turn is based

upon Bird.

 Chapter 2: The APL Environment 173

Browsing Class Scripts
Selecting DomesticParrot in the left-hand pane brings up its Class Script in the

right-hand pane.

174 Dyalog APL/W User Guide

… and selecting Parrot in the left-hand pane brings up the Class Script for Parrot.

 Chapter 2: The APL Environment 175

… and finally, selecting Bird in the left-hand pane brings up the Class Script for

Bird.

176 Dyalog APL/W User Guide

Browsing Type Libraries and .Net Metadata
When the View/Type Libraries option is enabled, the Workspace Explorer allows you

to:

• Browse the Type Libraries for all the COM server objects that are installed on

your computer, whether or not they are loaded in your workspace.

• Load Type Libraries for COM objects

• Browse the Type Library associated with an OLEClient object that is already

instantiated in the workspace.

If the Microsoft .Net Framework is installed, you may in addition:

• Load Metadata for specific .Net classes

• Browse the loaded Metadata, viewing information about classes, methods,

properties and so forth.

If the Type Libraries option is enabled, the Workspace Explorer displays a folder

labelled TypeLibs which, when opened, displays two others labelled Loaded Libraries

and Registered Libraries as shown below.

 Chapter 2: The APL Environment 177

Browsing Registered Libraries
If you open the Registered Libraries folder, the Workspace Explorer will display in the

tree view pane the names of all the Type Libraries associated with the COM Server

objects that are installed on your computer.

If you select one of these Library names, some summary information is displayed in

the list view pane.

For example, the result of selecting the Microsoft Excel 9.0 Object Library is

illustrated below.

If instead, you select the Registered Libraries folder itself, the list of Registered Type

Libraries is displayed in the list view pane

178 Dyalog APL/W User Guide

Loading a Type Library
You can load a library shown in the list view pane by double-clicking its name.

Alternatively, you can load a library shown in the tree view pane by selecting Load

from its context menu.

In either case, a message box will appear asking you to confirm. The operation to load

a Type Library may take a few moments to complete.

Notice that if the selected Library references any other libraries, they too will be

loaded. For example, loading the Microsoft Excel 9.0 Object Library brings in the

Microsoft Office 9.0 Object Library and the Microsoft Visual Basic for Applications

Extensibility 5.3 Library too. It also contains references to a general library called the

OLE Automation Type Library, so this is also loaded.

When you)SAVE your workspace, all of the Type Libraries that you have loaded will

be saved with it. Note that type library information can take up a considerable amount

of workspace.

 Chapter 2: The APL Environment 179

Browsing Loaded Libraries
If you have already loaded any Type Libraries into the workspace, using the

Workspace Explorer or as a result of creating one or more OLEClient objects, you can

select and open the Loaded Libraries folder.

The picture below illustrates the effect of having loaded the Microsoft Excel 9.0 Object

Library.

Notice that any external references to other libraries causes these to be brought in too.

If you select a loaded Type Library, summary information is displayed in the list view

pane.

If you open a loaded Type Library, four sub-folders appear named Object CoClasses,

Objects, Enums and Event Sets respectively.

180 Dyalog APL/W User Guide

Object CoClasses
A Type Library describes a number of objects. Typically, all of the objects have

properties and methods, but only some of them, perhaps just a few, generate events.

Objects which generate events are represented by CoClasses, each of which has a

pointer to the object itself and a pointer to an event set.

For example, the Microsoft Excel 9.0 Object Library contains seven CoClasses named

Application, Chart, Global etc as shown below.

 Chapter 2: The APL Environment 181

Opening the Application folder you can see that the Application CoClass comprises the

_Application object coupled with the AppEvents event set as shown below.

The specific methods, properties and events supported by the CoClass object can be

examined by opening the appropriate sub-folder. The same information for these and

other objects is also accessible from the Objects and Event Sets folders as discussed

below.

182 Dyalog APL/W User Guide

Objects
The Objects folder contains several sub-folders each of which represents a named

object defined in the library.

Each object folder contains two sub-folders named Methods and Properties. Selecting

one of these causes the list of Methods or Properties to be displayed in the list view

pane. The picture below shows the Methods exposed by the Microsoft Excel 9.0 Range

object.

 Chapter 2: The APL Environment 183

If you open the Methods or Properties subfolder, you can display more detailed

information about individual Methods and Properties. For example, the following

picture shows information about the SaveAs method exposed by the Microsoft Excel

9.0 Worksheet object.

This tells you that the SaveAs method takes up to 9 parameters of which the first,

Filename, is mandatory and is of data type VT_BSTR (a character string). Note that

[in] indicates that the parameter is an input parameter.

184 Dyalog APL/W User Guide

Incidentally, the optional Fileformat parameter is an example of a parameter whose

value must be one of a list of Enumerated Constants. Even without looking at the

documentation, the possible values can be deduced by browsing the Enums folder, with

the results shown below.

You can therefore deduce that the following expression, executed in the namespace

associated with the currently active worksheet, will save the sheet in comma-separated

format (CSV) in a file called mysheet.csv:

 SaveAs 'MYSHEET.CSV' xlCSV
or
 SaveAs 'MYSHEET.CSV' 6

 Chapter 2: The APL Environment 185

Event Sets
The Event Sets folder contains several sub-folders each of which represents a named

set of events generated by the objects defined in the library.

If you open one of these event sets, the names of the events it contains are displayed in

the tree view pane. If you then select one of the events, its details are displayed in the

list view pane as shown below.

This example shows that when it fires, the SheetActivate event invokes your callback

function with a single argument named Sh whose datatype is VT_DISPATCH (in

practice, a Worksheet object).

186 Dyalog APL/W User Guide

Enums
The Enums folder will typically contain several sub-folders each of which represents a

named set of enumerated constants.

If you select one of these sets, the names and values of the constants it contains are

displayed in the list view pane as shown below.

 Chapter 2: The APL Environment 187

Browsing .Net Classes
If the Microsoft .Net Framework is installed, you may browse the .Net Metadata using

the Explorer. To gain information about one or more Net Classes, open the Workspace

Explorer, right click the Metadata folder, and choose Load.

This brings up the Browse .Net Assembly dialog box as shown below. Navigate to the

.NET assembly of your choice, and click Open.

188 Dyalog APL/W User Guide

Note that the .NET Classes provided with the .NET Framework are typically located in

C:\WINDOWS\Microsoft.NET\Framework\V2.0.50215. The last named

folder is the Version number.

The most commonly used classes of the .NET Namespace System are stored in this

directory in an Assembly named mscorlib.dll, along with a number of other

fundamental .NET Namespaces.

The result of opening this Assembly is illustrated in the following screen shot. The

somewhat complex tree structure that is shown in the Workspace Explorer merely

reflects the structure of the Metadata itself.

 Chapter 2: The APL Environment 189

Opening the System/ Classes sub-folder causes the Explorer to display the list of

classes contained in the .NET Namespace System as shown in the picture below.

190 Dyalog APL/W User Guide

The Constructors folder shows you the list of all of the valid constructors and their

parameter sets with which you may create a new instance of the Class by calling New.

The constructors are those named .ctor; you may ignore the one named .cctor,

(the class constructor) and any labelled as Private.

For example, you can deduce that DateTime.New may be called with three numeric

(Int32) parameters, or six numeric (Int32) parameters, and so forth. There are in

fact seven different ways that you can create an instance of a DateTime.

For example, the following statement may be used to create a new instance of

DateTime (09:30 in the morning on 30
th

 April 2001):
 mydt>�NEW DateTime (2001 4 30 9 30 0)

 mydt
30/04/2001 09:30:00

 Chapter 2: The APL Environment 191

The Properties folder provides a list of the properties supported by the Class. It shows

the name of the property followed by its data type. For example, the DayOfYear

property is defined to be of type Int32.

You can query a property by direct reference:
 mydt.DayOfWeek
Monday

192 Dyalog APL/W User Guide

Notice too that the data types of some properties are not simple data types, but Classes

in their own right. For example, the data type of the Now property is itself

System.DateTime. This means that when you reference the Now property, you get

back an object that represents an instance of the System.DateTime object:

 mydt.Now
07/11/2001 11:30:48
 �TS
2001 11 7 11 30 48 0

The Methods folder lists the methods supported by the Class. The Explorer shows the

data type of the result of the method, followed by the name of the method and the types

of its arguments. For example, the IsLeapYear method takes an Int32 parameter

(year) and returns a Boolean result.

 mydt.IsLeapYear 2000
1

 Chapter 2: The APL Environment 193

Find Objects Tool
The Find Objects tool is a modeless dialog box that may be toggled on and off by the

system action [WSSearch]. In a default Session, this is attached to a MenuItem in

the Tools menu and a Button on the session toolbar. This tool allows you to search the

active workspace for objects that satisfy various criteria.

The first page allows you to specify the name of the object which you wish to find and

the namespace(s) in the workspace that are to be searched for it.

You type the name of the object you wish to find into the field labelled Named. To

locate all objects beginning with a particular string, enter the string followed by a '*'

character. For example, if you enter the string FOO*, the system will locate all objects

whose name begins with FOO.

Four check boxes are provided for you to specify the types of objects you wish to

locate. For example, if you clear Variables, Operators and Namespaces, the system

will only search for functions.

194 Dyalog APL/W User Guide

You can restrict the search to a particular namespace by typing its name into the field

labelled Look in. You can also restrict the search by clearing the Include sub-

namespaces and Include Session namespace check boxes. Clearing the former restricts

the search to the root namespace or to the namespace that you have specified in Look

In, and does not search within any sub-namespaces contained therein. Clearing the

latter causes the system to ignore �SE in its search.

The second page, labelled Modified, allows you to search for objects that have been

modified by a particular user or at a certain time

To make the search dependent upon modification, you must check the Modified

Objects check box.

To locate objects modified by a particular user, enter the user name in the field labelled

Modified by. Otherwise leave this blank.

To find objects which have been modified at a certain time or within a specified period

of time, check the appropriate radio button and enter the appropriate dates or time

spans.

 Chapter 2: The APL Environment 195

The third page, labelled Advanced, allows you to search for objects that contain a

particular text string.

If you wish to search for objects containing a particular character string, type the string

into the field labelled Containing Text.

Match Case specifies whether or not the text search is case sensitive.

Use Regular Expressions specifies whether or not regular expressions are applicable.

For example, if you enter FOO* into the field labelled Containing Text and check this

box, the system will find objects that contain any text string starting with the 3

characters FOO. If this box is not checked, the system will find objects that contain the

4 characters FOO*.

Match Whole Word specifies whether or not the search is restricted to entire words.

As Symbol Reference specifies whether or not the search is restricted to APL symbols.

If so, matching text in comments and other strings is ignored.

If you wish to restrict the search to find only objects whose size is within a given

range, check the box labelled Size is between and enter values into the fields provided.

196 Dyalog APL/W User Guide

When you press the Find Now button, the system searches for objects that satisfy all of

the criteria that you have specified on all 3 pages of the dialog box and displays them

in a ListView. The example below illustrates the result of searching the workspace for

all functions containing references to the symbol CURSOR.

You may change the way in which the objects are displayed in the ListView using the

View menu or the tool buttons, in the same manner as for objects displayed in the

Workspace Explorer. You may also edit, delete and rename objects in the same way.

Furthermore, objects can be copied or moved by dragging from the ListView in the

Search tool to the TreeView in the Explorer.

If you wish to specify a completely new set of criteria, press the New Search button.

This will reset all of the various controls on the 3 pages of the dialog box to their

default values.

 Chapter 2: The APL Environment 197

Object Properties Dialog Box
The Object Properties dialog box displays detailed information for an APL object. It is

displayed by executing the system action [ObjProps]. In a default Session, this is

provided in the Tools menu, the Session popup menu and from the Explorer. An

example (for a function) is shown below.

Properties Tab
The Properties tab displays general information about the object. For a function, this

includes an extract from its header line, when it was last modified, and by whom.

198 Dyalog APL/W User Guide

Value Tab
For a variable, the Values tab displays the value of the variable. For a function, it

displays its canonical representation.

 Chapter 2: The APL Environment 199

Monitor Tab
The Monitor tab applies only to a function and displays the result of �MONITOR. The

Reset button, resets �MONITOR for the lines on which it is currently set. The Set All

Lines button, sets �MONITOR to monitor all the lines in the function. The Clear All

Lines switches �MONITOR off.

200 Dyalog APL/W User Guide

COM Properties Tab
The COM Properties tab applies only to a function in an OLEServer or

ActiveXControl namespace. The tab is used to define arguments and data types for an

exported Method or Property. For further information, see Interface Guide, Chapters

12 and 13.

 Chapter 2: The APL Environment 201

Net Properties Tab
The Net Properties tab applies only to a function in a NetType namespace. The tab is

used to define arguments and data types for an exported Method or Property. For

further information, see .Net Interface Guide.

202 Dyalog APL/W User Guide

The Editor

Invoking the Editor
The editor may be invoked in several ways. From the session, you can use the system

command)ED or the system function �ED, specifying the names(s) of the object(s) to

be edited. You can also type the name of the object and then press Shift+Enter (ED),

click the Edit tool on the tool bar, or select Edit from the Action menu. If you invoke

the editor when the cursor is positioned on the empty input line, with a suspended

function in the State Indicator, the editor is invoked on the suspended function and the

cursor is positioned on the line at which it is suspended. This is termed naked edit.

These ways of invoking the editor apply only in the session window

In addition, there is a general point-and-edit facility which works in edit and trace

windows too. Simply position the input cursor over a name and double-click the left

mouse button. Alternatively, you can press Shift+Enter or select Edit from the File

menu. The name can appear in the Session, in an Edit window, or in a Trace window;

the effect is the same. Note that, in the Session, typing a name and pressing Shift+Enter

is actually a special case of point-and-edit. Note also that a naked edit can be invoked

by double-clicking the left mouse button in the empty input line.

The type of a new object defaults to function/operator unless the object is shadowed, in

which case it defaults to a variable (vector of character vectors). You can however

specify the type of a new object explicitly using)ED or �ED . For example, typing

")ED �LIST -MAT" in a CLEAR WS would create Edit windows for a vector of

character vectors named LIST and a character matrix called MAT. See)ED or �ED

for details.

 Chapter 2: The APL Environment 203

If the name is not already being edited, it is assigned a new edit window. If you edit a

name which is already being edited, the system focuses on the existing edit window

rather than opening a new one. Edit windows are displayed using the colour

combination associated with the type of the object being edited.

Window Management (Standard)
Unless Classic Dyalog mode is selected (Options/Configure/Trace/Edit), the Editor is a

Multiple Document Interface (MDI) window that may be a stand-alone window, or be

docked in the Session window. Each of the objects being edited is displayed in a

separate sub-window. Individual edit windows are managed using standard MDI

facilities.

The initial size of an edit window is specified by the edit_rows and edit_cols

parameters. The first edit window is positioned at 0 0. Subsequent ones are staggered

according to the values of the edit_offset_y and edit_offset_x parameters.

By default, the Session has the Editor docked along the right edge of the Session

window. When you edit a function, the Editor window automatically springs into view

as illustrated overleaf.

204 Dyalog APL/W User Guide

 Chapter 2: The APL Environment 205

You can resize the Editor pane to view more or less of the Session itself, by dragging

its title bar.

Using the buttons in the title bar, you can instantly maximise the Editor pane to allow

you to concentrate on editing, or minimise it to reveal the entire Session. In either case,

the restore button quickly restores the 2-pane layout.

The picture below shows the effect of maximising the Editor. The BUILD_SESSION
edit window is itself maximised within the Editor too.

Note that when the Editor has the focus, the Editor menubar is displayed in place of the

Session menubar.

206 Dyalog APL/W User Guide

Window Management (Classic Dyalog mode)
If Classic Dyalog mode is selected (Options/Configure/Trace/Edit) each Edit window

is a top-level window created as a child of the Session window. This means that Edit

windows always appear on top of the Session.

The first edit window is created at the position specified by the edit_first_y and

edit_first_x parameters. The initial size of an edit window is specified by the

edit_rows and edit_cols parameters.

 Chapter 2: The APL Environment 207

Subsequent ones are staggered according to the values of the edit_offset_y and

edit_offset_x parameters.

Moving around an edit window

You can move around in the edit window using the scrollbar, the cursor keys, and the

PgUp and PgDn keys. In addition, Ctrl+Home (UL) moves the cursor to the beginning

of the top-line in the object and Ctrl+End moves the cursor to the end of the last line in

the object. Home (LL) and End (RL) move the cursor to the beginning and end

respectively of the line containing the cursor.

Closing an edit window

Closing an edit window from its System Menu has the same effect as choosing Exit

from the File Menu; namely that it fixes the object in the workspace and then closes the

edit window.

Minimising an edit window

Minimising an edit window causes it to be displayed as a Dyalog APL Edit icon, with

the name of the object underneath. The edit window can be restored in the normal way,

or by an attempt to re-edit the same name.

208 Dyalog APL/W User Guide

Editor ToolBar

Toggles Line numbers on/off.

Adds a comment to the beginning of the current

line or all selected lines.

Removes a comment (if present) from the current

line or all selected lines.

Saves changes and closes the current edit window..

Enter search text and click one of the following two

buttons.

Locates the next occcurence of the search text.

Locates the previous occurrence of the search text..

Toggle line numbers

Comment selected text

Uncomment selected text

Save changes and return

Search Box

Search for Next Match

Search for Previous Match

 Chapter 2: The APL Environment 209

The File Menu

The File Menu

The File menu illustrated above provides the following options.

Fix Fixes the object in the workspace, but leaves the edit window open.

Edit history is also preserved. If the data has changed and the

confirm_fix parameter is set, you will be prompted to confirm.

Edit Opens an Edit window on the name under the mouse pointer.

Print Prints the current contents of the edit window.

Print Setup Displays the Print Configuration dialog box.

Exit Fixes the object in the workspace and closes the edit window. If the

data has changed and the confirm_exit parameter is set, you will be

prompted to confirm.

Abort Closes the edit window, but does not fix the object in the workspace.

If the data has changed and the confirm_abort parameter is set, you

will be prompted to confirm.

Properties Displays the Object Properties dialog box for the current object.

210 Dyalog APL/W User Guide

The Edit Menu
The Edit menu provides a means to execute those commands that are concerned with

editing text. The Edit menu and the actions it provides are described below.

The Edit Menu

 Chapter 2: The APL Environment 211

Reformat Reformats the function body in the edit window, indenting control

structures as appropriate.

Undo Undoes the last change made to the object. Repeated use of this

command sequentially undoes each change made since the edit

window was opened.

Redo Re-applies the previous undone change. Repeated use of this

command sequentially restores every undone change.

Cut Copies the selected text to the clipboard and removes it from the

object.

Copy Copies the selected text to the clipboard.

Paste Copies the text in the clipboard into the object at the current

location of the input cursor.

Paste Unicode Same as Paste, but gets the Unicode text from the clipboard and

converts to �AV. Classic Edition only

Paste Non-

Unicode

Same as Paste, but gets the ANSI text from the clipboard and

converts to �AV. Classic Edition only.

Clear Deletes the selection or the character under the cursor. Has no effect

on the clipboar

Open Line Inserts a blank line immediately below the current one.

Delete Line Deletes the current line.

Goto Line Prompts for a line number, then positions the cursor on that line.

Find Displays the Find dialog box.

Replace Displays the Replace dialog box.

Comment

selected lines

Adds a comment symbol to the beginning of all selected lines.

UnComment

selected lines

Removes a comment symbol from the beginning of all selected

lines.

Toggle Local

name

Adds or removes the name under the cursor to/from the function

header line.

The Find and Replace items are used to display the Find dialog box and the

Find/Replace dialog box respectively. These boxes are used to perform search and

replace operations and are described later in this Chapter.

212 Dyalog APL/W User Guide

Once displayed, each of the two dialog boxes remains on the screen until it is either

closed or replaced by the other. This is convenient if the same operations are to be

performed over and over again, and/or in several windows. Find and Find/Replace

operations are effective in the window that previously had the focus.

The View Menu
The View menu allows you to display and toggle �TRACE, �STOP and �MONITOR

settings The View menu and the actions it provides are described below.

Trace Displays a column to the left of the function that displays �TRACE

settings

Stop Displays a column to the left of the function that displays �STOP

settings

Monitor Displays a column to the left of the function that displays

�MONITOR settings

Line Numbers Toggles the display of line numbers on/off.

 Chapter 2: The APL Environment 213

The Window Menu
The Window menu provides a means to control the display of the various edit

windows. The Window menu and the actions it provides are described below.

Close All Windows Closes all the edit windows. If Confirm on Edit Window

Closed is checked, you will be prompted to confirm for any

objects that you have changed.

Cascade Arranges the edit windows in overlapping fashion.

Tile Arranges the edit windows in a tiling fashion.

Arrange Icons Arranges any minimised edit windows.

Editor Allows you to Select the edit window corresponding to the

named object.

214 Dyalog APL/W User Guide

Using the Editor

Creating a New Function

Type the name of your function and invoke the editor. To do this you may press

Shift+Enter, or select Edit from the Action menu, or double-click the left button on

your mouse, or click the Edit tool in the tool bar. A new window will appear on the

screen with the name you have chosen displayed in the top border. The name is also

inserted in the function header and the cursor positioned to the right. The new window

is automatically given the input focus.

Line-Numbers on/off

Try changing the line numbers setting by clicking on the Line Numbers option in the

Options menu. Note that line-numbering on/off is effective for all edit windows.

Adding Lines

If the keyboard is in Insert mode, pressing Enter at the end of a line opens you a new

blank line under the current one and positions the cursor there ready for input. You can

also open a new blank line by pressing Ctrl+Shift+Insert (OP).

If the cursor is at the end of the last line in the function, pressing Enter adds another

line even if the keyboard is in Replace mode.

Indenting Text

Dyalog APL allows you to insert leading spaces in lines of a function and (unless the

AutoFormat parameter is set) preserves these spaces between editing sessions.

Embedded spaces are however discarded. You can enter spaces using the space bar or

the Tab key. Pressing Tab inserts spaces up to the next tab stop corresponding to the

value of the TabStops parameter. If the AutoIndent parameter is set, new lines are

automatically indented the same amount as the preceding line.

Reformatting

The RD command (which by default is mapped to Keypad-Slash) reformats a function

according to your AutoFormat and TabStops settings..

Deleting Lines

To delete a block of lines, select them by dragging the mouse or using the keyboard

and then press Delete or select Clear from the Edit menu. A quick way to delete the

current line without selecting it first is to press Ctrl+Delete (DK) or select Delete Line

from the Edit menu.

 Chapter 2: The APL Environment 215

Copying Lines

Select the lines you wish to copy by dragging the mouse or using the keyboard. Then

press Ctrl+Insert or select Copy from the Edit menu. This action copies the selection to

the clipboard. Now position the input cursor where you wish to make the copy and

press Shift+Insert, or select Paste from the Edit menu. You can also use this method to

duplicate a ragged block of text.

To copy text using drag-and-drop editing:

1. Select the text you want to move.

2. Hold down the Ctrl key, point to the selected text and then press and hold

down the left mouse button. When the drag-and-drop pointer appears, drag

the cursor to a new location.

3. Release the mouse button to drop the text into place.

Moving Lines

Select the lines you wish to copy by dragging the mouse or using the keyboard. Then

press Shift+Delete or select Cut from the Edit menu. This action copies the selection to

the clipboard and removes it. Now position the input cursor at the new location and

press Shift+Insert, or select Paste from the Edit menu. You can also use this method to

move a ragged block of text.

To move text using drag-and-drop editing:

1. Select the text you want to move.

2. Point to the selected text and then press and hold down the left mouse

button. When the drag-and-drop pointer appears, drag the cursor to a new

location.

3. Release the mouse button to drop the text into place.

Joining and Splitting Lines

To join a line to the previous one: select Insert mode; position the cursor on the first

character in the line; press Bksp.

To split a line: select Insert mode; position the cursor at the place you want it split;

press Return.

Toggling Localisation

The TL command (which by default is mapped to Ctrl+Up) toggles the localisation of

the name under the cursor. If the name is currently global, pressing Ctrl+Up causes the

name to be added to the list of locals in the function header. If the name is already

localised, pressing Ctrl+Alt+l removes it from the header.

216 Dyalog APL/W User Guide

Find and Replace Dialogs
The Find and Find/Replace dialog boxes are used to locate and modify text in an Edit

window.

Search For Enter the text string that you want to find. Note that the text from the

last 10 searches is available from the drop-down list. If appropriate,

the search text is copied from the Find Objects tool. This makes it easy

to first search for functions containing a particular string, and then to

locate the string in the functions.

Replace With Enter the text string that you want to use as a replacement. Note that

the text from the last 10 replacements is available from the drop-down

list.

Match Case Check this box if you want the search to be case-sensitive.

Match Whole

Word

Check this box if you want the search to only match whole words.

Use Regular

Expressions

Check this box if you want to use various wild card symbols.

AutoMove If checked, the Find or Find/Replace dialog box will automatically

position itself so as not to obscure a matched search string in the edit

window.

Direction Select Up or Down to control the direction of search.

 Chapter 2: The APL Environment 217

Docking the Find/Replace Dialogs

You may dock the Find or Find/Replace dialog boxes in the Session window. If you do

so, they are displayed in a slightly abbreviated form, for economy of space. The picture

below illustrates the effect of docking the Replace dialog box along the top edge of the

Session.

218 Dyalog APL/W User Guide

Using Find and Replace

Find and Replace work on the concept of a current search string and a current replace

string which are entered using the Find and Find/Replace Dialog boxes. These boxes

also contain buttons for performing search/replace operations.

Suppose that you want to search through a function for references to the string

"Adam". It is probably best to work from the start of the function, so first position the

cursor there (by pressing Ctrl+Home). Then select Find from the Edit menu. The Find

Dialog box will appear on your screen with the input cursor positioned in the edit box

awaiting your input. Type "Adam" and click the Find Next button (or press Return),

and the cursor will locate the first occurrence. Clicking Find Next again will locate the

second occurrence. You can change the direction of the search by selecting Up instead

of Down. You could search another function for "Adam" by opening a new Edit

window for it and clicking Find Next. You do not have to redefine the search string.

Now let us suppose that you wish to replace all occurrences of "Adam" with

"Amanda". First select Replace from the Edit menu. This will cause the Find Dialog

box to be replaced by the Find/Replace Dialog box. Enter the string "Amanda" into the

box labelled Replace With, then click Replace All. All occurrences of "Adam" in the

current Edit window are changed to "Amanda". To repeat the same global change in

another function, simply open an edit window and click Replace All again. If instead

you only want to change particular instances of "Adam" to "Amanda" you may use

Find Next to locate the ones you want, and then Replace to make each individual

alteration.

Saving and Quitting

To save the function and terminate the edit, press Esc (EP) or select Exit from the File

menu. The new version of the function replaces the previous one (if any) and the edit

window is destroyed.

Alternatively, you can select Fix from the File menu. This fixes the new version of the

function in the workspace, but leaves the edit window open. Note that the history is

also retained, so you can subsequently undo some changes and fix the function again.

To abandon the edit, press Shift+Esc (QT) or select Abort from the File menu. This

destroys the edit window but does not fix the function. The previous version (if any) is

unchanged.

 Chapter 2: The APL Environment 219

The Tracer
The Tracer is a visual debugging aid that allows you to step through an application line

by line. During a Trace you can track the path taken through your code, display

variables in edit windows and watch them change, skip forwards and backwards in a

function. You can cutback the stack to a calling function and use the Session and

Editor to experiment with and correct your code. The Tracer may be invoked in several

ways as discussed below.

Tracing an expression
Firstly, you may explicitly trace a function (strictly an expression) by typing an

expression then pressing Ctrl+Enter (TC) or by selecting Trace from the Action menu.

This lets you step through the execution of an expression from the beginning.

In the same way as when you execute a statement by pressing Enter, the expression is

(if necessary) copied down to the input line and then executed. However, if the

expression includes a reference to an unlocked defined function or operator, execution

halts at its first line and a Trace window containing the suspended function or operator

is displayed on the screen. The cursor is positioned to the left of the first line which is

highlighted.

Naked Trace
The second way to invoke the Tracer is when you have a suspended function in the

State Indicator and you press Ctrl+Enter (TC) on the empty input line. This is termed

naked trace. The same thing can be achieved by selecting Trace from the Action menu

on the Session Window or by clicking the Trace button in the Trace Tools. However,

in ALL cases it is essential that the input cursor is on the empty Input line in the

Session.

The effect of naked trace is to open the Tracer and to position the cursor on the

currently suspended line. It is exactly as if you had Traced to that point from the Input

Line expression whose execution caused the suspension.

Automatic Trace
The third way to invoke the Tracer is to have the system do it automatically for you

whenever an error occurs. This is achieved by setting the Show trace stack on error

option in the Trace/Edit tab of the Configuration dialog (Trace_on_error parameter).

When an error occurs, the system will automatically deploy the Tracer. Note that this

means that when an error occurs, the Trace window will then receive the input focus

and not the Session window.

220 Dyalog APL/W User Guide

Tracer Options
From Version 10.1 onwards, the Tracer is designed to be docked in the Session

window.

In previous versions of Dyalog APL, the Tracer was implemented as a stack of

separate windows (one per function on the calling stack) or as a single, but still

separate, window.

You can disable the standard behaviour by selecting Classic Dyalog mode from the

Trace/Edit tab of the Configuration dialog box.

If you do so, you then have two further choices:

• to have the Tracer operate in multiple windows or in a single window

• to have the Trace window(s) dependant or independent of the Session

window.

These alternatives are discussed later in this Chapter.

 Chapter 2: The APL Environment 221

The Trace Window
The Tracer is implemented as a single dockable window that displays the function that

is currently being executed. There are two subsidiary information windows which are

also fully dockable. The first of these (SIStack) displays the current function calling

stack; the second (Threads) displays a list of running threads.

In the default Session files , the Tracer is docked along the bottom edge of the Session

window. When you invoke the Tracer, it springs up as illustrated below. In this

example, the function being traced is WDesign.RUN, the top-level function in the

WDESIGN workspace.

In the default layout, the SIStack window and.the Threads Tool are not visible, but

may be displayed from the Tracer's Tools menu.

222 Dyalog APL/W User Guide

Trace Tools
The Tracer may be controlled from the keyboard, or by using the Trace Tools which

are arranged along the title bar of the Debugger window. Note that the button names

are solely for reference purposes in the description that follows.

Button Name Key Code Keystroke Description

Exec ER Enter Executes the current line

Trace TC Ctrl+Enter Traces execution of the

current line

Back BK Ctrl+Shift+Bksp Skips back one line

Fwd FD Ctrl+Shift+Enter Skips forward one line

Restart RM -�LC Restarts execution of the

current thread, closing all

its trace windows

Restart

all

threads

 Restarts execution for all

threads, closing all trace

windowss

Continue BH Continues execution of

the current thread, leaving

Trace windows displayed

Edit ED Shift+Enter Invokes the Editor

Exit EP Esc Closes the Trace window,

exits the current function

Intr Ctrl+Pause Interrupts execution

Reset CS Clears all break-points

(resets �STOP on every

function)

 Chapter 2: The APL Environment 223

Using the Trace Tools, you can single-step through the function or operator by

clicking the Exec and/or Trace buttons. If you click Exec the current line of the

function or operator is executed and the system halts at the next line. If you click

Trace, the current line is executed but any defined functions or operators referenced on

that line are themselves traced. After execution of the line the system again halts at the

next one. Using the keyboard, the same effect can be achieved by pressing Enter or

Ctrl+Enter.

The illustration below shows the state of execution having clicked Exec 26 times to

reach WDesign.RUN[27].

Execution Reached WDesign.RUN[27]WDesign.RUN[27]WDesign.RUN[27]WDesign.RUN[27]

The next illustration shows the result of clicking Trace at this point. This caused the

system to trace into WDesign.CAP_ROOT, the function called from

WDesign.RUN[27].

Notice how each function call on the stack is represented by an item in the drop-down

combo box..

224 Dyalog APL/W User Guide

Execution Reached WDesign.CAP_ROOT[1]WDesign.CAP_ROOT[1]WDesign.CAP_ROOT[1]WDesign.CAP_ROOT[1]

You may also display the SI stack in a separate window by selecting SIStack from the

Tools menu.

 Chapter 2: The APL Environment 225

The illustration below shows the state of execution having traced deeper into the

system. In this example, the SIStack window is docked on the right-hand side of the

Debugger window.

Execution reached four levels deep

At this stage, the State Indicator is as follows:

)SI
WDesign.DEÛ�-ÃÈ_OBJ_REF[1]*
WDesign.CAP_PROPS[49]
WDesign.CAP_ROOT[4]
WDesign.RUN[27]

226 Dyalog APL/W User Guide

Controlling Execution
The point of execution may be moved by clicking the Back and Fwd buttons in the

Trace Tools window or, using the keyboard, by pressing Ctrl+Shift+Bksp and

Ctrl+Shift+Enter. Notice however that these buttons do not themselves change the

State Indicator or the display in the SIStack window. This happens only when you

restart execution from the new point.

You can cut back the stack by clicking the <EP> button in the Trace Tools window.

This causes execution to be suspended at the start of the line which was previously

traced. The same effect can be achieved using the keyboard by pressing Esc. It can also

be done by selecting Exit from the File menu on the Trace Window or by selecting

Close from its system menu.

The <RM> button removes the Trace window and resumes execution. The same is

achieved by the expression -�LC. The <BH> button also continues execution, but

leaves the Trace window displayed and allows you to watch its progress.

Using the Session and the Editor
Whilst using the Tracer you can skip to the Session or to any Edit window and back

again. While it is docked, you may resize the Tracer pane by dragging its title bar, and

you may use the buttons provided to maximise, minimise and restore the Tracer pane

within the Session window.

Unless you move it sideways, the cursor is positioned to the left of the suspended line

in the top Trace window. If you press Shift+Enter (ED) with the cursor in this position,

the trace window becomes an edit window allowing you to edit the function or operator

on top of the stack. You can achieve the same thing by selecting Edit from the File

menu, but the input cursor MUST again be in the left-most (empty) column, or the

system will attempt to open an edit window for the name under the cursor (point-and-

edit).

When you finish editing, the window reverts to a trace window with the new definition

of the function or operator displayed.

You may also open a new edit window from within the Tracer using point-and-edit.

You can copy text from a trace window to the session for editing and execution or for

experimentation.

It is possible to skip from the Tracer to the Session and then re-invoke the Tracer on a

different expression.

 Chapter 2: The APL Environment 227

Setting Break-Points
Break-points are defined by �STOP and may be toggled on and off in an Edit or Trace

window by clicking in the appropriate column. The example below illustrates a

function with a �STOP break-point set on line[4].

�STOP break-points set or cleared in an Edit window are not established until the

function is fixed. �STOP break-points set or cleared in a Trace window are established

immediately.

Clearing All Break-Points

You can clear all break-points by pressing the above button in the Trace Tools

window. This in fact resets �STOP for all functions in the workspace.

228 Dyalog APL/W User Guide

The Classic mode Tracer
If you select Classic Dyalog mode from the Trace/Edit tab in the Configuration dialog

box, the Tracer behaves in the same way as in Dyalog APL Version 8.2. However, the

Tracer is not dockable in the Session.

There are two further options, namely Single Trace Window and Independent Trace

Stack.

Multiple Trace Windows

The following behaviour is obtained by deselecting the Single Trace Window option.

• Each function on the SI stack is represented by a separate trace window. The

top window contains the function that is currently executing, other windows

display functions further up the stack, in the order in which they were called.

• When you press Ctrl+Enter or click the Trace button on a line that calls

another function, a new trace window appears on top of the stack and displays

the newly called function.

• When a function exits, its trace window disappears and the focus moves to the

previous trace window. When the last function in a traced suspension exits,

the last trace window disappears.

• If you click the Quit this function button in the Trace Tools window, or press

Escape, or close the trace window by clicking on its [X] button or typing Alt-

F4, the top trace window disappears and the focus moves to the previous trace

window

• If you close any of the trace windows further down the stack, the stack will be

cut back to the corresponding point, i.e. to the line of code that called the

function whose trace window you closed.

• The <RM> button removes all the trace windows and resumes execution. The

same is achieved by the expression -�LC. The <CS> button also continues

execution, but leaves the trace windows displayed and allows you to watch

their progress.

• If you minimise any of the trace windows, the entire stack is minimised to a

single icon, from which it may be restored.

 Chapter 2: The APL Environment 229

Single Trace Window

The following behaviour is obtained by selecting the Single Trace Window option.

• The trace window contains a combo box whose drop-down displays the

contents of the SI stack. This box is not provided if there are multiple trace

windows.

• The trace window is re-used when tracing into, or returning from, a called

function. This means that there is never more than one trace window present.

• When the last function in a traced suspension exits, the trace window

disappears.

• If you click the Quit this function button in the Trace Tools window, or press

Escape, the current function is removed from the stack and the trace window

reused to display the calling function if there is one.

• Closing the trace window by clicking on its [X] button or typing Alt-F4

removes the window and clears the current suspension. It is equivalent to

typing naked branch (-) in the session window.

• If you move or resize the trace window, APL remembers its position, so that it

reappears in the same position when next used.

Dependent Trace Stack

If you deselect the Independent trace stack option, trace windows are owned by the

Session window and, as a consequence, are always shown on top of it. This reflects the

behaviour of Dyalog APL prior to Version 8.2.3, and is the default.

Independent Trace Stack

If you select the Independent trace stack option, trace windows are independent of the

Session window and so go behind it when the Session has the focus. Furthermore, the

top trace window is a top-level window in its own right and is therefore represented by

its own button in the Windows Taskbar. You can switch focus between the session and

top trace window in various ways:

• If any part of the target window is visible, click on it with the mouse.

• Click on its associated button in the Windows Taskbar.

• Use Ctrl-Tab to cycle within Dyalog APL application windows.

• Use Alt-Tab to cycle around all applications.

230 Dyalog APL/W User Guide

The Threads Tool
The Threads Tool is used to monitor and debug multi-threaded applications. To display

the Threads Tool, select Show Threads Tool from the Session Threads menu, or

Threads from the Session pop-up menu.

The above picture illustrates a situation using the LIFT.DWS workspace after

executing the function RUN. The Pause on Error option was enabled and a Stop was

set on RUN[63]. When RUN suspended at this point, all other threads (1-8) were

automatically Paused. Note that all other threads happen to be Paused in the middle of

calls to system functions

The columns of the Threads Tool display the following information.

Column Description

Tid The Thread ID (�TID) and name (�TNAME) if set

Location The currently executing line of function code

State Indicates what the thread is doing. (see below)

Flags Normal or Paused.

Treq The Thread Requirements (�TREQ)

 Chapter 2: The APL Environment 231

Thread States

State Description

Pending Not yet running

Initializing Not yet running

Defined function Between lines of a defined function

Dynamic function Between lines of a dynamic function

Suspended Indicates that the thread is suspended and is able to accept

input from the Session window.

Session Indicates that Session window is connected to this thread.

(no stack) Indicates that the thread has no SI stack and the Session is

connected to another thread. This state can only occur for

Thread 0.

Exiting About to be terminated

:Hold Waiting for a :Hold token

:EndHold Waiting for a :Hold token

�DL Executing �DL

�DQ Executing �DQ

�NA Waiting for a DLL (�NA) call to return.

�TGET Executing �TGET, waiting for a token

�TGET

(Ready to continue)
Executing �TGET, having got a token

�TSYNC Waiting for another thread to terminate

Awaiting request Indicates a thread that is associated with a .NET system thread,

but is currently unused

Called .Net Waiting for a call to .NET to return.

Paused/Normal
In addition to the thread state as described above, a thread may be Paused or Normal as

shown in the Flags column. A Paused thread is one that has temporarily been removed

from the list of threads that are being scheduled by the thread scheduler, A Paused

thread is effectively frozen.

232 Dyalog APL/W User Guide

Threads Tool Pop-Up Menu

The Pop-up Menu

Switch to Selecting this item causes APL to attempt to suspend (if necessary)

and switch to the selected thread, connecting it to the Session and

Debugger windows.

Refresh Now Refreshes the Threads Tool display to show the current position and

state of each thread.

Auto Refresh Selecting this item causes the Threads Tool to be updated

continuously, so that it shows the latest position and state of each

thread.

Pause Threads

on Error

If this item is checked, APL automatically Pauses all other threads

when a thread suspends due to an error or an interrupt.

Paused This item toggles a thread between being Paused and Normal. It

Pauses a Normal thread and resumes a Paused thread.

Pause All This item causes all threads to be Paused.

Resume All This item resumes all threads.

Restart All This item resumes all Paused threads, restarts all suspended threads,

and closes the Debugger.

 Chapter 2: The APL Environment 233

Debugging Threads
The Debugger provides a tabbed interface that allows you to easily switch between

suspended threads for debugging purposes. To keep things simple for non-threaded

applications, Tabs are only displayed if there is a thread suspended that is other than

Thead 0. The following picture shows the Debugger open on a multi-threaded

application (LIFT.DWS) when only Thread 0 is suspended. This has been achieved by

setting a stop on Run[63]

234 Dyalog APL/W User Guide

In the next picture, the user has chosen to display the Threads Tool and then dock it

between the Session and Debugger windows. Note that only one thread, thread 0 (Run)

is suspended. All the other threads are Paused (because Pause on Error is enabled).

 Chapter 2: The APL Environment 235

The user then uses the context menu to Switch To Thread 6 (whose name is Lady 6)

which was Paused on PERSON[7] in the middle of a �TGET. The act of switching to

this thread caused it to be suspended at the beginning of its current line PERSON[7]

and the Debugger now displays two Tabs to represent the two suspended threads. Note

that both the thread id and the thread name are displayed on the Tabs.

Note also that the Session window is connected to the thread indicated by the selected

Tab. In this case, typing MYFLOOR into the Session window displays the value of the

local variable MYFLOOR in Thread 6 (Lady 6).

236 Dyalog APL/W User Guide

You can use the Tabs to switch between the suspended threads, so clicking the Tab

labelled 0:Run causes the display to change to the picture shown below. The Session is

now connected to Thread 0 (Run), so the value of �LC is 63.

 Chapter 2: The APL Environment 237

The Event Viewer
The Event Viewer can be used to monitor events on Dyalog APL GUI objects. To

display the Event Viewer, select Event Viewer from the Session Tools menu.

You can choose:

• which types of events you want to monitor

• which objects you want to monitor

In the example illustrated above, the user has chosen to monitor events on a Form
#.F. Furthermore, the user has chosen to monitor GotFocus, LostFocus, MouseUp,

MouseDblClick and Configure events. Notice that there is a callback #.FOO attached

to the Configure event.

238 Dyalog APL/W User Guide

The Spy Menu

The Spy menu, illustrated above, provides the following options and actions.

Close: Closes the Event Viewer

Clear: Clears all of the event information that is currently displayed in

the Event Viewer.

All: In this mode all the events are displayed in the Event Viewer as

they occur, whether or not there is an action associated with

them.

As Queued: In this mode only events that have associated actions are

displayed in the event viewer. Note that KeyPress events are

always queued and therefore always appear, even if there is no

associated action.

SnapShot: In this mode the Event Viewer displays a snapshot of the

internal event queue. Only those events that are currently in the

internal APL event queue waiting to be processed are

displayed.

Stop Logging: When checked, this item switches event logging off.

 Chapter 2: The APL Environment 239

The Columns Menu

The Columns menu allows you to choose which information is displayed for the events

you are monitoring.

Object If checked, this item displays the name of the object on which

the event occurred.

Event Name If checked, this item displays the name of the event that

occurred.

Event Number If checked, this item displays the event number of the event that

occurred.

Parameters: If checked, this item displays the parameters for the event that

occurred. These are the items that would be passed in the

argument to a callback function.

Action If checked, this item displays the action associated with the

event., for example the name of a callback function, or an

expression to be executed.

Thread ID: If checked, this item displays the thread id of the thread in

which the event occurred

Nqed If checked, this item displays 0 or 1 according to whether or not

the event occurred naturally or was generated

programmatically by �NQ.

Event ID If checked, this item displays the event id of the event that

occurred. This id is used internally.

240 Dyalog APL/W User Guide

The Select Menu

The Select menu allows you to highlight certain events in the Event Viewer. For

example, if you are monitoring TCP/IP events on a number of TCPSockets, you can

highlight just the events for a particular socket.

Select Matching

Events

Highlights all the events that have the same Object and

Event Name (or Event Number) as the currently selected

event.

Select All Events

On This Object

Highlights all the events that have the same Object as the

currently selected event.

Select All Events Of

This Type

Highlights all the events that have the same Event Name (or

Event Number) as the currently selected event

These items are also available from the pop-up menu that appears when you press the

right mouse button over an event displayed in the Event Viewer window.

The Options Menu

The Options menu allows you to choose which information is displayed for the events

you are monitoring.

Always on Top If checked, this item causes the Event Viewer window to be

displayed above all other windows (including other application

windows).

Use APL font If checked, this item causes the information displayed in the

Event Viewer window to be displayed using the APL font (the

same font as is used in the Session window). If not, the system

uses the appropriate Windows font.

Settings→ Displays the Event Viewer Options Dialog Box.

 Chapter 2: The APL Environment 241

Options Dialog Box
The Event Viewer Options dialog box allows you to select the objects and events that

you wish to monitor.

Events to view

The list box shows all the events that are support by the Dyalog APL GUI and allows

you to select which events are to be monitored. Only those events that are selected will

be reported. You can sort the events by name or by event number by clicking the

appropriate column header.

242 Dyalog APL/W User Guide

Objects to view

All Objects If checked, this item enables event reporting on all Dyalog APL

GUI objects.

Objects of Type If checked, this item activates the adjoining Select button and

disables all other Object selection mechanisms. Clicking the

Select button brings up a dialog box that allows you to choose

which types of Dyalog APL GUI objects you want to monitor.

Find Tool This tool allows you to choose a single specific Dyalog APL

GUI object that you want to monitor. To use it, drag the Find

Tool and move it over your Dyalog APL GUI objects. As you

drag it, the individual objects are highlighted and their details

displayed in the Name, Type, Thread ID and Handle fields.

Drop the Find Tool on the object of your choice.

Select Clicking this button brings up a dialog box that displays the

entire Dyalog APL GUI structure as a tree view. You can

choose a single object by selecting it.

 Chapter 2: The APL Environment 243

Closing the Session
When you close the Session window by pressing its X button, or with Alt+F4, the

system prompts you with the following dialog box.

Label Parameter Description

Save Session

Configuration

SaveSessionOnExit If checked, your current session file

will be saved before APL terminates.

Save Continue

Workspace

SaveContinueOnExit If checked, your current workspace

will be saved as CONTINUE.DWS

before APL terminates.

Save Session

Log

SaveLogOnExit If checked, your session log will be

saved before APL terminates.

244 Dyalog APL/W User Guide

The Session Object
Purpose The Session object �SE is a special system object that represents the

 session window and acts as a parent for the session menus, tool

bar(s) and status bar.

Children Form, MenuBar, Menu, MsgBox, Font, FileBox, Printer, Bitmap,

Icon, Cursor, Clipboard, Locator, Timer, Metafile, Class, ToolBar,

StatusBar, TipField, TabBar, ImageList, PropertySheet, TCPSocket,

CoolBar, ToolControl, BrowseBox

Properties Type, Caption, Posn, Size, File, Coord, State, Event, FontObj,

YRange, XRange, Data, TextSize, Handle, HintObj, TipObj, CurObj,

CurPos, CurSpace, Log, Input, Popup, StatusWindow Editor

ScriptCompiler, MethodList, ChildList, EventList, PropList

Events Close, Create, FontOK, FontCancel, WorkspaceLoaded

Methods ChooseFont, FileRead, FileWrite

There is one (and only one) object of type Session and it is called �SE. You may use

�WG, �WS and �WN to perform operations on �SE, but you cannot expunge it with �EX

nor can you recreate it using �WC. You may however expunge all its children. This will

result in a bare session with no menu bar, tool bar or status bar.

�SE is loaded from a session file when APL starts. The name of the session file is

specified by the session_file parameter . If no session file is defined, �SE will have no

children and the session will be devoid of menu bar, tool bar and status bar

components.

You may use all of the standard GUI system functions to build or configure the

components of the Session to your own requirements. You may also control the

Session by changing certain of its properties.

Note that the Session reports a Create event when APL is first started, and a

WorkspaceLoaded event when a workspace is loaded or on a clear ws.

 Chapter 2: The APL Environment 245

Read-Only Properties

The following properties of �SE are read-only and may not be set using �WS:

Type A character vector containing 'Session'

Caption A character vector containing the current caption in the title bar of

the Session window.

TextSize Reports the bounding rectangle for a text string. For a full

description, see TextSize in Object Reference.

CurObj A character vector containing the name of the current object. This is

the name under or immediately to the left of the input cursor.

CurPos A 2-element integer vector containing the position of the input cursor

(row and column number) in the session log. This is �IO dependent.

If �IO is 1, and the cursor is positioned on the character at the

beginning of the first (top) line in the log, CurPos is (1 1). If �IO is

0, its value would be (0 0).

CurSpace A character vector which identifies the namespace from which the

current expression was executed. If the system is not executing code,

CurSpace is the current space and is equivalent to the result of

''��NS ''.

Handle The window handle of the Session window.

Log A vector of character vectors containing the most recent set of lines

(input statements and results) that are recorded in the session log.

The first element contains the top line in the log.

Input A vector of character vectors containing the most recent set of input

statements (lines that you have executed) contained in the input

history buffer. ChildList A vector of character vectors containing

the types of object that can be created as a child of �SE.

 A vector of character vectors containing the names of the methods

associated with �SE.

ChildList A vector of character vectors containing the types of object that can

be created as a child of �SE.

EventList A vector of character vectors containing the names of the events

generated by �SE.

PropList A vector of character vectors containing the names of the properties

associated with �SE.

246 Dyalog APL/W User Guide

Read/Write Properties

The following properties of �SE may be changed using �WS:

Coord Specifies the co-ordinate system for the session window. For a full

description, see the section on Coord in the Object Reference

manual.

Data May be used to associate arbitrary data with the session object �SE.

For further details, see the section on Data in the Object Reference

manual

Event You may use this property to attach an expression or callback

function to the Create event or to user-defined events. A callback

attached to the Create event can be used to initialise the Session

when APL starts.

File The full pathname of the session file that is associated with the

current session. This is the file name used when you save or load the

session by invoking the FileRead or FileWrite method.

FontObj Specifies the APL font. In general, the FontObj property may specify

a font in terms of its face name, size, and so forth or it may specify

the name of a Font object. For applications, the latter method is

recommended as it will result in better management of font

resources. However, in the case of the Session object, it is

recommended that the former method be used.

HintObj Specifies the name of the object in which hints are displayed. Unless

you specify HintObj individually for session components, this object

will be used to display the hints associated with all of the menu

items, buttons, and so forth in the session. The object named by this

property is also used to display the message ⌷Ready...⌷ when APL

is waiting for input. For further details, see the section on HintObj in

the Object Reference manual.

Popup A character vector that specifies the name of a popup menu to be

displayed when you click the right mouse button in a Session

window. Version 8 only.

 Chapter 2: The APL Environment 247

Posn A 2-element numeric vector containing the position of the top-left

corner of the session window relative to the top-left corner of the

screen. This is reported and set in units specified by the Coord

property.

Size A 2-element numeric vector containing the height and width of the

session window expressed in units specified by the Coord property.

State An integer that specifies the window state (0=normal, 1=minimised,

2=maximised). You may wish to use this property to minimise and

later restore the session under program control. If you save your

session with State set to 2, your APL session will start off

maximised.

TipObj Specifies the name of the object in which tips are displayed. Unless

you specify TipObj individually for session components, this object

will be used to display the tips associated with all of the menu items,

buttons, and so forth in the session. For further details, see the

section on TipObj in the Object Reference manual.

XRange See the section on XRange in the Object Reference manual.

YRange See the section on YRange in the Object Reference manual.

248 Dyalog APL/W User Guide

Configuring the Session
As supplied, your default session will have a menu bar, a tool bar and a status bar.

There are many ways in which you may configure this set-up, including the following:

• You may select a different APL font or character size.

• You may alter the appearance of the menus by changing the Caption properties of

the various Menu and MenuItem objects. For example, you may prefer the menus

to appear in your own language.

• You may alter the structure of the menus. For example, you may wish to create a

Search menu directly on the menu bar rather than having Find and Replace as part

of the Edit menu.

• You may add new Menu and MenuItem objects to the menu bar, or new Button

objects to the tool bar, that execute APL functions or expressions for you. You can

store the code inside the �SE namespace so that it is remains available when you

switch from one workspace to another.

• You may add other objects to the tool bar to allow you to provide input for your

functions or to display output. For example, you may display a Combo object that

offers you a selection of names applicable to a particular task.

• You may add additional toolbars.

• You may remove objects too; for example, you can remove fields from the

StatusBar or even delete it entirely. Indeed, you may dispense with the menu bar

and/or tool bar as well

This section illustrates how you can configure your session using worked examples.

The examples are by no means exhaustive, but are designed to demonstrate the

principles. Please note that the structure and names of the objects used in these

examples may not be identical to your default session as supplied. Before you attempt

to change your session, please check the structure and the object names using �WN and

�WG. The supplied session was created using the function BUILD_SESSION in the

workspace BUILDSE. If you wish to make substantial changes to your session, you

may find it most convenient to edit the functions in this workspace, re-run

BUILD_SESSION, and then save it.

Please note that these examples assume that Expose Session Properties is enabled.

 Chapter 2: The APL Environment 249

Changing the Font
The APL session font is defined by the Font property of �SE. To change the font

permanently, you should select a different Font and/or size of Font using the combo

and spinner boxes on the Session toolbar, and save your Session.

Classic Edition is distributed with bitmap fonts suitable for use on your screen, and

TrueType fonts for your printer. You can use the TrueType font on the screen, but it is

less attractive than the bitmap fonts at low resolutions. The bitmap fonts come in two

sizes (16 x 8 and 22 x 11) and two weights (normal and bold). You may select other

sizes, so long as the height is a multiple of 16 or 22. The scaling is performed

automatically by Windows.

Changing Menu Appearance
The name of the Session MenuBar is '�SE.mb'. To simplify the specification of

object names, we will first change space to the MenuBar itself:

)CS �SE.mb
�SE.mb

The, the name of the Menu objects owned by the MenuBar are given by the expression:

 'Menu' �WN ''
 file edit view windows session log action options
tools help

The current caption on the file menu is:

 file.Caption
&File

To change the Caption to Workspace:

 file.Caption>'Workspace'

To change the colour of the New option in the File menu to red:

 file.clear.FCol>255 0 0

250 Dyalog APL/W User Guide

Reorganising the Menu Structure
This example shows how you may alter the structure of the session menus by adding a

Search menu to the menu bar to provide access to the File and File/Replace dialog

boxes and removing these options from the Edit menu.

To simplify the process, we will first change space into the MenuBar object itself:

)CS �SE.mb
�SE.mb

Then we can begin by adding the Search menu. You can specify where the new menu

is to be added using its Posn property. In this case, Search will be added at position 3

(after Edit).

 'search'�WC 'Menu' '&Search' 3

Next we will remove the Find and Replace MenuItem objects from the Edit menu.

Their names can be obtained from �WN:

 'MenuItem'�WN'edit'
edit.prev edit.next edit.clear edit.copy edit.paste
edit.find edit.replace

It is worth noting that these MenuItems perform their actions because their Event

property is set to execute the system operations [Find] and [Replace]

respectively when they are selected.

 edit.find.Event
 Select [Find]
 edit.replace.Event
 Select [Replace]

The following statement removes them from the Edit menu:

 �EX¨'edit.find' 'edit.replace'

and the following statements add them to the Search menu:

 'search.find' �WC 'MenuItem' '&Find'
 ('Event' 'Select' '[Find]')
 'search.replace' �WC 'MenuItem' '&Replace'
 ('Event' 'Select' '[Replace]')

 Chapter 2: The APL Environment 251

Adding your own MenuItem
This example shows how you can add a menu item that executes an APL expression. In

this case we will do something very simple; namely add a Time option to the Tools

menu which will execute �TS. Notice that the statement also defines a Hint. This will

be displayed when you select the option, prior to releasing the mouse button to action

it.

Once again, we will start by changing space into the Tools menu itself

)CS �SE.mb.tools
�SE.mb.tools

Then we will define a new MenuItem to perform the action we require:

 'ts'�WC'MenuItem' '&Time'
 ('Event' 'Select' '��TS')
 ('Hint' 'Display Timestamp')

The � symbol is very important and distinguishes an expression to be executed

immediately, as in this case, from a callback function. The resulting Tools menu now

appears as follows:

A customised Tools menu

Selecting Time produces the following output in the session:

 2007 12 10 17 10 2 0

252 Dyalog APL/W User Guide

Adding your own Tool Button
This example shows how you can add a button to the session tool bar that executes an

APL function.

The example function we will use is called XREF. This function analyses another

function, listing the sub-functions that it calls. Instead of returning a result, this

example displays the sub-functions in a Form.

 S XREF FN;REFS
[1] :If 0<ΡFN
[2] :AndIf 3=�NC FN
[3] REFS>�REFS FN
[4] REFS>(3=�NC REFS)�REFS
[5] REFS>(.REFS)�¨' '
[6] REFS>REFS��FN
[7] :If 0<ΡREFS
[8] 'F'�WC'Form'('Functions called by ',FN)
[9] F.FontObj>�SE.FontObj
[10] 'F.L'�WC'List'REFS(0 0)(100 100)
[11] :EndIf
[12] :EndIf
 S

To make this function available from a Session tool button, we need to do a number of

things.

Firstly, we must install the function in �SE so that it is always there, regardless of the

current active workspace. This is easily achieved using the Explorer or �NS.

 '�SE' �NS 'XREF'

Secondly, we need to find another way to specify its argument FN. One possibility

would be to display a dialog box, asking the user to specify the name of the function to

be analysed. A neater solution is to use the CurObj property of �SE which reports the

name under the cursor. Using CurObj, the user can simply place the cursor over the

name of the function to be analysed, and then click the XREF tool button.

To get FN from CurObj, all we need to do is to change the header and lines 1-2 to:

[0] XREF;FN;REFS
[1] :If 0<ΡFN>�SE.CurObj
[2] :AndIf 3=�NC FN>�SE.CurSpace,'.',FN

Notice that the function name reported by CurObj is prefixed by its pathname which

comes from the CurSpace property. This reports the user’s current namespace.

 Chapter 2: The APL Environment 253

Next we will add a new button to the tool bar in the Tools CoolBand. Ideally we would

use a suitable bitmap, but to simplify the example, we will use a standard text button:

)CS �SE.cbtop.bandtb3.tb
�SE.cbtop.bandtb3.tb

 'xref' �WC 'Button' 'XREF'
 'xref' �WS 'Event' 'Select' '��SE.XREF'

Adding a tool button

254 Dyalog APL/W User Guide

 255

C H A P T E R 3

APL Files

Introduction

Most languages store programs and data separately. APL is unusual in that it allows

you to store programs and data together in a workspace.

This can be inefficient if your dataset gets very large; when your workspace is loaded,

you are loading ALL of your data, whether you need it or not.

It also makes it difficult for other users to access your data, particularly if you want

them to be able to update it.

In these circumstances, you must extract your data from your workspace, and write it

to a file on disk, thus separating your data from your program. There are many

different kinds of file format. This section is concerned with the two types of file

systems available to you which preserve the idea that your data consists of APL

objects; hence you can only access these types of files from within APL

The two types of file systems discussed here are External Variables and Component

Files. The first is very simple to use, since familiar APL expressions are used to access

the file. The second has an associated set of system functions through which you

access the file. Although this means that you have to learn a whole new set of functions

in order to use files, you will find that they provide you with a very powerful

mechanism to control access to your data.

Read both sections before you decide on the type of file system to use. Although both

are actually implemented in the same way internally, each is good in particular

circumstances.

256 Dyalog APL/W User Guide

Let us suppose that you have written an APL system that builds a personnel database,

containing the name, age and place of birth of each employee. Let us assume that you

have created a variable DATA, which is a nested vector with each element containing a

person's name, age and place of birth:

 DISPLAY 2�DATA
.--.
| .-----------------------. .--------------------------. |
	.--------. .-----.		.-------. .---------.									
		Jonathan	42	Wales				Pauline	21	Isleworth		
	'--------' '-----'		'-------' '---------'									
'�----------------------' '�-------------------------'												
'�---'

Then the following APL expressions can be used to access the database:

Example 1:

Show record 2

 DISPLAY 2EDATA
.--------------------------.
| .-------. .---------. |
| |Pauline| 21 |Isleworth| |
| '-------' '---------' |
'�-------------------------'

Example 2:

How many people in the database?

 ΡDATA
 123

Example 3:

Update Pauline's age

 (2 2EDATA)>16

Example 4:

Add a new record to the database

 DATA ,> �'Maurice' 18 'London'

Now let's look at the two ways that we can write this APL variable data out to disk.

 Chapter 3: APL Files 257

External Variables

Overview
The system function �XT associates an APL variable with a file. Whenever you

reference the variable, data is read from the file. Whenever you assign to the variable,

data is written to the file. (See Language Reference for more details).

Let's make our database into an external variable.

First, we'll associate a variable X with a new file called personnel using �XT:

 'personnel' �XT 'X'

What's in X?

 X
 VALUE ERROR
 X
 :

X has no value, since there is nothing in the file.

Now we'll assign our DATA variable to X, thus writing our data to disk:

 X > DATA

Now, what's the shape of X?

 ΡX
 124

Let's erase X, and reassociate the file with our variable DATA:

 �EX 'X'

 'personnel' �XT 'DATA'

We can use the same APL expressions as before to access our database, even though

it's now on disk, not in our workspace:

258 Dyalog APL/W User Guide

Example 1:

Show record 2

 DISPLAY 2EDATA
.--------------------------.
| .-------. .---------. |
| |Pauline| 16 |Isleworth| |
| '-------' '---------' |
'�-------------------------'

Note that if the size of the variable is greater than 8Kb and it is nested, indexing only

accesses the part that it needs. Hence, in this example, only record 2 is read into the

workspace, NOT the whole database.

Example 2:

How many people in the database?

 ΡDATA
 124

Example 3:

Correct Pauline's age:

 (2 2EDATA)>21

Example 4:

Add a new record to the database:

 DATA ,> �'Geoff' 41 'Oxford'

Note that references to the whole variable read or write the ENTIRE file.

 Chapter 3: APL Files 259

The following tables shows how external variable usages correspond to standard file

operations, and non-standard ones.

File Operation External Variable Expression

Create a new file 'NEWFILE' �XT 'VAR'

Open existing file 'OLDFILE' �XT 'VAR'

Read record from file REC > NEVAR

Write record to file (NEVAR) > REC

Append record to file VAR > VAR , �REC

Which file is open �XT 'VAR'

Close the file �EX 'VAR'

External Variables and Standard File Operations

File Operation External Variable Expression

Reverse the file VAR > I VAR

Sort file on age VAR > VAR[�2E¨VAR]

Drop first record VAR > 1 . VAR

External Variables and Non-Standard File Operations

But remember, references to the whole variable read or write the ENTIRE file, and that

although it seems simple to sort an entire file, it's going to take quite a while to do it if

the file consists of 10,000 records!

Sharing External Variables
If you are working in a network, you may want to make your database available to

other users in the system.

External variables may be EXCLUSIVE or SHARED. An exclusive variable can only

be accessed by the owner of the file. A shared external variable may be accessed

(concurrently) by other users. Access to an exclusive variable is faster than to a shared

one because APL does not have to flush back or refresh disk buffers between file

accesses. An external variable is always created as EXCLUSIVE. You can change the

access control using the XVAR function in the UTIL workspace.

260 Dyalog APL/W User Guide

Controlling Multi-User Access
Dyalog APL contains mechanisms that prevent data getting mixed up if two users

update an external variable at the same time. However, it is the programmer's

responsibility to control the logic of multi-user updates. Both types of file system use

the same facility, �FHOLD, to achieve this

Be careful when you make an association with a variable. Remember that the variable

takes the value of the file on association, not the other way around. Consider the

example below:

 DATA > MAKE_DATABASE & Complicated program that
 & takes a long time to run

 'newfile' �XT 'DATA' & Associate a new file
 & with the DATA variable

 ΡDATA & DATA has taken on the
VALUE ERROR & value of this file !
 ΡDATA
 :

If you want to write existing data to a file, use a temporary variable to make the

association:

 DATA > MAKE_DATABASE & Complicated program that
 & takes a long time to run

 'newfile' �XT 'TEMP' & Associate a new file
 & with temporary variable

 TEMP > DATA & Write data to file

 Chapter 3: APL Files 261

Component Files

Introduction
The APL Component File System is a more formal file system than External Variables.

You may already be familiar with Component File Systems offered with other versions

of APL; this version is compatible with APL*PLUS, with the exception of the slippery

tie facility.

Overview
A component file is a data file maintained by Dyalog APL. It contains a series of APL

arrays known as components which are accessed by reference to their relative position

or component number within the file. Component files are just like other data files

and there are no special restrictions imposed on names or sizes.

A set of system functions is supplied to perform a range of file operations. These

provide facilities to create or delete files, and to read and write components. Facilities

are also provided for multi-user access, including the capability to determine who may

do what, and file locking for concurrent updates.

Tying and Untying Files
To access an existing component file it must be tied, i.e. opened for use. The tie may

be exclusive (single-user access) or shared (multi-user access). A file is untied, i.e.

closed, using �FUNTIE or on terminating Dyalog APL. File ties survive)LOAD,

�LOAD and)CLEAR operations.

Tie Numbers
A file is tied by associating a file name with a tie number. Tie numbers are integers in

the range 1 - 2147483647 and, you can supply one explicitly, or have the interpreter

allocate the next available one by specifying 0. The system functions which tie files

return the tie number as a ‘shy’ result.

Creating and Removing Files
A component file is created using �FCREATE which automatically ties the file for

exclusive use. A newly created file is empty, i.e. contains 0 components. A file is

removed with �FERASE, although it must be exclusively tied to do so.

262 Dyalog APL/W User Guide

Adding and Removing Components
Components are added to a file using �FAPPEND and removed using �FDROP.

Component numbers are allocated consecutively starting at 1. Thus a new component

added by �FAPPEND is given a component number which is one greater that that of

the last component in the file. Components may be removed from the beginning or end

of the file, but not from the middle. Component numbers are therefore contiguous.

Reading and Writing Components
Components are read using �FREAD and overwritten using �FREPLACE. There are no

restrictions on the size or type of array which may replace an existing component.

Components are accessed by component number, and may be read or overwritten at

random.

Component Information
In addition to the data held in a component, the user ID that wrote it and the time at

which it was written is also recorded. This control information is useful in providing an

audit trail and in facilitating partial backups of components that have changed.

Multi-User Access
�FSTIE ties a file for shared (i.e. multi-user) access. This kind of access would be

appropriate for a multi-user UNIX system, a network of single user PCs, or multiple

APL tasks under Microsoft Windows.

�FHOLD provides the means for the user to temporarily prevent other co-operating

users from accessing one or more files. This is necessary to allow a single logical

update involving more than one component, and perhaps more than one file, to be

completed without interference from another user. �FHOLD is applicable to External

Variables as well as Component Files

 Chapter 3: APL Files 263

File Access Control
There are two levels of file access control. As a regular data file, the operating system

read/write controls for owner and other users apply. In addition, Dyalog APL manages

its own access controls using the access matrix. This is an integer matrix with 3

columns and any number of rows. Column 1 contains user numbers, column 2 an

encoding of permitted file operations, and column 3 passnumbers. Each row specifies

which file operations may be performed by which user(s) with which passnumber.

User Number

This is a number which is defined by the aplnid parameter. If you intend to use

Dyalog APL’s access matrix to control file access in a multi-user environment, it is

desirable to allocate to each user, a distinct user number. However, if you intend to

rely on under-lying operating system controls, allocating a user number of 0 to

everyone is more appropriate. A user number of 0 (which is the installation default),

causes APL to circumvent the access matrix mechanism described below.

Permission Code

This is an integer representation of a boolean mask. Each bit in the mask indicates

whether or not a particular file operation is permitted as follows:

 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit No.
.--------------------------------.
| | | | | | | | | | | | | | |
---------------------------------. File Access
 � � � � � � � � � � � � Operation Code
 | | | | | | | | | | | |
 | | | | | | | | | | | ----- �FREAD 1
 | | | | | | | | | | ------- �FTIE 2
 | | | | | | | | | --------- �FERASE 4
 | | | | | | | | ----------- �FAPPEND 8
 | | | | | | | ------------- �FREPLACE 16
 | | | | | | --------------- �FDROP 32
 | | | | | |
 | | | | | ------------------- �FRENAME 128
 | | | | |
 | | | | ----------------------- �FRDCI 512
 | | | -------------------------- �FRESIZE 1024
 | | ----------------------------- �FHOLD 2048
 | -------------------------------- �FRDAC 4096
 ----------------------------------- �FSTAC 8192

264 Dyalog APL/W User Guide

For example, if bits 1, 4 and 6 are set and all other relevant bits are zero only �FREAD,

�FAPPEND and �FDROP are permitted. A convenient way to set up the mask is to sum

the access codes associated with each operation.

For example, the value 41 (1+8+32) authorises �FREAD, �FAPPEND and �FDROP. A

value of ¯1 (all bits set) permits all operations. Thus by subtracting the access codes of

operations to be forbidden, it is possible to permit all but certain types of access. For

example, a value of ¯133 (¯1 - 4 + 128) permits all operations except

�FERASE and �FRENAME. Note that the value of unused bits is ignored. Any non-

zero permission code allows �FSTIE and �FSIZE. �FCREATE, �FUNTIE, �FLIB,

�FNAMES and �FNUMS are not subject to access control. Passnumbers may also be

used to establish different levels of access for the same user.

When the user attempts to tie a file using �FTIE or �FSTIE a row of the access

matrix is selected to control this and subsequent operations.

If the user is the owner, and the owner's user ID does not appear in the access matrix,

the value (�AI[1] ¯1 0) is conceptually appended to the access matrix. This

ensures that the owner has full access rights unless they are explicitly restricted.

The chosen row is the first row in which the value in column 1 of the access matrix

matches the user ID and the value in column 3 matches the supplied passnumber which

is taken to be zero if omitted.

If there is no matching row and the user is the owner, no access is granted and the tie

fails with FILE ACCESS ERROR. If there is no matching row and the user is not the

owner, the access matrix is rescanned for the first row with a zero (anybody but the

owner) in column 1 and a matching passnumber in column 3. If such a row does not

exist, no access is granted and the tie fails with FILE ACCESS ERROR.

Once the applicable row of the access matrix is selected, it is used to verify all

subsequent file operations. The passnumber used to tie the file MUST be used for

every subsequent operation. Secondly, the appropriate bit in the permission code

corresponding to the file operation in question must be set. If either of these conditions

are broken, the operation will fail with FILE ACCESS ERROR.

 Chapter 3: APL Files 265

If the access matrix is changed while a user has the file tied, the change takes

immediate effect. When the user next attempts to access the file, the applicable row in

the access matrix will be reselected subject to the supplied passnumber being the same

as that used to tie the file. If access with that password is rescinded the operation will

fail with FILE ACCESS ERROR.

When a file is created using �FCREATE, the access matrix is empty. At this stage, the

owner has full access with passnumber 0, but no access with a non-zero passnumber.

Other users have no access permissions. Thus only the owner may initialise the access

matrix.

User 0
If a user has an aplnid of 0, the access matrix and supplied passnumbers are ignored.

This user is granted full and unrestricted access rights to all component files, subject

only to underlying operating system restrictions.

General File Operations
�FLIB gives a list of component files in a given directory. �FNAMES and �FNUMS

gives a list of the names and tie numbers of tied files. These general operations which

apply to more than one file are not subject to access controls.

266 Dyalog APL/W User Guide

Component File System Functions
Please see Language Reference for full details of the syntax of these system functions.

General

�FAVAIL Report file system availability

File Operations

�FCREATE Create a file

�FTIE Tie an existing file (exclusive)

�FSTIE Tie an existing file (shared)

�FUNTIE Untie file(s)

�FCOPY Copy a file

�FERASE Erase a file

�FRENAME Rename a file

File information

�FNUMS Report tie numbers of tied files

�FNAMES Report names of tied files

�FLIB Report names of component files

�FPROPS Report file prroperties

�FSIZE Report size of file

Writing to the file

�FAPPEND Append a component to the file

�FREPLACE Replace an existing component

Reading from a file

�FREAD Read a component

�FRDCI Read component information

Manipulating a file

�FDROP Drop a block of components

�FRESIZE Change file size (forces a compaction)

Access manipulation

�FSTAC Set file access matrix

�FRDAC Read file access matrix

Control multi-user access

�FHOLD Hold file(s) - see later section for details

 Chapter 3: APL Files 267

Using the Component File System
Let's build a component file to hold our personnel database.

First, we must make sure that the component file system is available to us. Unless you

are using the FSCB control mechanism, there should never be any need to issue this

command (see Component File Control Mechanisms for more details):

 �FAVAIL & Returns 1 if all OK,
1 & else returns 0

Create a new file, giving the file name, and the number you wish to use to identify it

(the file tie number):

 'COMPFILE' �FCREATE 1

If the file already exists, or you have already used this tie number, then APL will

respond with the appropriate error message.

Now write the data to the file. We could write a function that loops to do this, but it is

neater to take advantage of the fact that our data is a nested vector, and use each (¨).

 DATA �FAPPEND¨ 1

Now we'll try our previous examples using this file.

Example 1:

Show record 2

 DISPLAY �FREAD 1 2
.--------------------------.
| .-------. .---------. |
| |Pauline| 21 |Isleworth| |
| '-------' '---------' |
'�-------------------------'

268 Dyalog APL/W User Guide

Example 2:

How many people in our database?

 �FSIZE 1 & First component, next
1 125 10324 4294967295 & component, file size,
 & maximum file size

 ¯1+2E�FSIZE 1 & Number of data items

The fourth element of �FSIZE indicates the file size limit. Dyalog APL does not

impose a file size limit, although your operating system may do so, but the concept is

retained in order to make this version of Component Files compatible with others.

Example 3:

Update Pauline's age

 REC > �FREAD 1 2 & Read second component
 REC[2] > 18 & Change age
 REC �FREPLACE 1 2 & And replace component

Example 4:

Add a new record

 ('Janet' 25 'Basingstoke') �FAPPEND 1

Example 5:

Rename our file

 'PERSONNEL' �FRENAME 1

Example 6:

Tie an existing file; give file name and have the interpreter allocate the next available

tie number.

 'SALARIES' �FTIE 0
 2

 Chapter 3: APL Files 269

Example 7:

Give everyone access to the PERSONNEL file

 (1 3Ρ0 ¯1 0)�FSTAC 1

Example 8:

Set different permissions on SALARIES.

 AM > 1 3Ρ1 ¯1 0 & Owner ID 1 has full access
 AM�> 102 1 0 & User ID 102 has READ only
 AM�> 210 2073 0 & User ID 210 has
 & READ+APPEND+REPLACE+HOLD

 AM �FSTAC 2 & Store access matrix

Example 9:

Report on file names and associated numbers

 �FNAMES,�FNUMS
 PERSONNEL 1
 SALARIES 2

Example 10:

Untie all files

 �FUNTIE �FNUMS

270 Dyalog APL/W User Guide

Programming Techniques
The techniques discussed in this section apply to both types of file structure.

Controlling Multi-User Access
Obviously, Dyalog APL contains mechanisms that prevent data getting mixed up if

two users update a file at the same time. However, it is the programmer's responsibility

to control the logic of multi-user updates. Both types of file systems use the same

facility, �FHOLD, to achieve this.

For example, suppose two people are updating our database at the same time. The first

checks to see if there is an entry for 'Geoff', sees that there isn't so adds a new

record. Meanwhile, the second user is checking for the same thing, and so also adds a

record for 'Geoff'. Each user would be running code similar to that shown below :

 S UPDATE;DATA;NAMES
[1] & Using the external variable
[2] 'personnel' �XT 'DATA'
[3] NAMES>E¨DATA
[4] -END×Ι(�'Geoff')�NAMES
[5] DATA>DATA,�'Geoff' 41 'Hounslow'
[6] END:
 S

 S UPDATE;DATA;NAMES
[1] & Using the component file
[2] 'PERSONNEL' �FSTIE 1
[3] NAMES>E��FREAD ¨ 1,¨Ι¯1+2E�FSIZE 1
[4] -END×Ι(�'Geoff')�NAMES
[5] ('Geoff' 41 'Hounslow')�FAPPEND 1
[6] END:�FUNTIE 1
 S

The system function �FHOLD provides the means for the user to temporarily prevent

other co-operating users from accessing one or more files. This is necessary to allow a

single logical update, perhaps involving more than one record or more than one file, to

be completed without interference from another user.

 Chapter 3: APL Files 271

The code above is replaced by that below:

 S UPDATE;DATA;NAMES
[1] & Using the external variable
[2] 'personnel' �XT 'DATA'
[3] �FHOLD 'personnel'
[4] NAMES>E¨DATA
[5] -END×Ι(�'Geoff')�NAMES
[6] DATA>DATA,�'Geoff' 41 'Hounslow'
[7] END: �FHOLD Ι0
 S

 S UPDATE;DATA;NAMES
[1] & Using the component file
[2] 'PERSONNEL' �FSTIE 1
[3] �FHOLD 1
[4] NAMES>E��FREAD ¨ 1,¨Ι¯1+2E�FSIZE 1
[5] -END×Ι(�'Geoff')�NAMES
[6] ('Geoff' 41 'Hounslow')�FAPPEND 1
[7] END:�FUNTIE 1 � �FHOLD Ι0
 S

Successive �FHOLDs on a file are queued by Dyalog APL; once the first �FHOLD is

released, the next on the queue holds the file. �FHOLDs are released by return to

immediate execution, by �FHOLD �, or by erasing the external variable.

It is easy to misunderstand the effect of �FHOLD. It is NOT a file locking mechanism

that prevents other users from accessing the file. It only works if the tasks that wish to

access the file co-operate by queuing for access by issuing �FHOLDs. It would be very

inefficient to issue a �FHOLD on a file then allow the user to interactively edit the data

with the hold in operation. What happens if he goes to lunch? Any other user who

wants to access the file and cooperates by issuing a �FHOLD would have to wait in the

queue for 3 hours until the first user returns, finishes his update and his �FHOLD is

released. It is usually more efficient (as well as more friendly) to issue �FHOLDs

around a small piece of critical code.

Suppose we had a control file associated with our personnel data base. This control file

could be an external variable, or a component file. In both cases, the concept is the

same; only the commands needed to access the file are different. In this example, we

will use a component file:

 'CONTROL'�FCREATE 1 & Create control file
 (1 3Ρ0 ¯1 0) �FSTAC 1 & Allow everyone access
 � �FAPPEND 1 & Set component 1 to empty
 �FUNTIE 1 & And untie it

272 Dyalog APL/W User Guide

Now we'll allow our man that likes long lunch breaks to edit the file, but will control

the hold in a more efficient way:

 S EDIT;CMP;CV
[1] & Share-tie the control file
[2] 'CONTROL' �FSTIE 1
[3] & Share-tie the data file
[4] 'PERSONNEL' �FSTIE 2
[5] & Find out which component the user wants to edit
[6] ASK:CMP>ASK∆WHICH∆RECORD
[7] & Hold the control file
[8] �FHOLD 1
[9] & Read the control vector
[10] CV>�FREAD 1 1
[11] & Make control vector as big as the data file
[12] CV>(¯1+2E�FSIZE 2)�CV
[13] & Look at flag for this component
[14] -(FREE,INUSE)[1+CMPECV]
[15] & In use - tell user and release hold
[16] INUSE:'Record in use' � �FHOLD � � -ASK
[17] & Ok to use - flag in-use and release hold
[18] FREE:CV[CMP]>1 � CV �FREPLACE 1 1� �FHOLD �
[19] & Let user edit the record
[20] EDIT∆RECORD RECORD
[21] & When he's finished, clear the control vector
[22] �FHOLD 1
[23] CV>�FREAD 1 1 �CV[CMP]>0 � CV �FREPLACE 1 1
[26] �FHOLD �
[27] & And repeat
[28] -ASK
 S

Component 1 of our CONTROL file acts as a control vector. Its length is set equal to

the number of components in the PERSONNEL file, and an element is set to 1 if a user

wishes to access the corresponding data component. Only the control file is ever

subject to a �FHOLD, and then only for a split-second, with no user inter-action being

performed whilst the hold is active.

When the first user runs the function, the relevant entry in the control vector will be set

to 1. If a second user accesses the database at the same time, he will have to wait

briefly whilst the control vector is updated. If he wants the same component as the first

user, he will be told that it is in use, and will be given the opportunity to edit something

else.

This simple mechanism allows us to lock the components of our file, rather the than

entire file. You can set up more informative control vectors than the one above; for

example, you could easily put the user name into the control vector and this would

enable you to tell the next user who is editing the component he is interested in.

 Chapter 3: APL Files 273

File Design
Our personnel database could be termed a record oriented system. All the information

relating to one person is easily obtained, and information relating to a new person is

easily added, but if we wish to find the oldest person, we have to read ALL the records

in the file.

It is sometimes more useful to have separate components, perhaps stored on separate

files, that hold indexes of the data fields that you may wish to search on. For example,

suppose we know that we always want to access our personnel database by name. Then

it would make sense to hold an index component of names:

 & Extract name field from each data record
 'PERSONNEL' �FSTIE 1
 NAMES>E��FREAD¨1,¨Ι¯1+2E�FSIZE 2

 & Create index file, and append NAMES
 'INDEX' �FCREATE 2
 NAMES �FAPPEND 2

Then if we want to find Pauline's data record:

 NAMES>�FREAD 2,1 & Read index of names
 CMP>NAMESΙ�'Pauline' & Search for Pauline
 DATA>�FREAD 1,CMP & Read relevant record

There are many different ways to structure data files; you must design a structure that

is the most efficient for your application.

274 Dyalog APL/W User Guide

Internal Structure
If you are going to make a lot of use of APL files in your systems, it is useful for you

to have a rough idea of how Dyalog APL organises and manages the disk area used by

such files.

The internal structure of external variables and component files is the same, and the

examples given below apply to both.

Consider a component file with 3 components:

 'TEMP' �FCREATE 1
 'One' 'Two' 'Three' �FAPPEND¨1

Dyalog APL will write these components onto contiguous areas of disk:

.-. .-. .-.
|1| |2| |3|
.-----.-----.-------.
| One | Two | Three |
--------------------.

Replace the second component with something the same size:

 'Six' �FREPLACE 1 2

This will fit into the area currently used by component 2.

.-. .-. .-.
|1| |2| |3|
.-----.-----.-------.
| One | Six | Three |
--------------------.

If your system uses fixed length records, then the size of your components never

change, and the internal structure of the file remains static.

 Chapter 3: APL Files 275

However, suppose we start replacing larger data objects:

 'Bigger One' �FREPLACE 1 1

This will not fit into the area currently assigned to component 1, so it is appended to

the end of the file. Dyalog APL maintains internal tables which contain the location of

each component; hence, even though the components may not be physically stored in

order, they can always be accessed in order.

 .-. .-. .-.
 |2| |3| |1|
.-----.-----.-------.------------.
|�����| Six | Three | Bigger One |
---------------------------------.

The area that was occupied by component 1 now becomes free.

Now we'll replace component 3 with something bigger:

 'BigThree' �FREPLACE 1 3

Component 3 is appended to the end of the file, and the area that was used before

becomes free:

 .-. .-. .-.
 |2| |1| |3|
.-----.------------------.------------.----------.
|�����| Six |������������| Bigger One | BigThree |
---.

Dyalog APL keeps tables of the size and location of the free areas, as well as the actual

location of your data. Now we'll replace component 2 with something bigger:

 'BigTwo' �FREPLACE 1 2

276 Dyalog APL/W User Guide

Free areas are used whenever possible, and contiguous holes are amalgamated.

 .-. .-. .-.
 |2| |1| |3|
.-----------.------------.------------.----------.
|�����������|BigTwo|�����| Bigger One | BigThree |
---.

You can see that if you are continually updating your file with larger data objects, then

the file structure can become fragmented. At any one time, the disk area occupied by

your file will be greater than the area necessary to hold your data. However, free areas

are constantly being reused, so that the amount of unused space in the file will seldom

exceed 30%.

Whenever you issue a monadic �FRESIZE command on a component file, Dyalog

APL COMPACTS the file; that is, it restructures it by reordering the components and

by amalgamating the free areas at the end of the file. It then truncates the file and

releases the disk space back to the operating system (note that some versions of UNIX

do not allow the space to be released). For a large file with many components, this

process may take a significant time.

There is no equivalent command to compact an external variable.

 Chapter 3: APL Files 277

Component File Control Mechanisms

Introduction
Three different component file control mechanisms are provided. You may choose

which of these is to be used from the Network tab of the Configuration Dialog box as

shown below. However, if you intend to share files with other users it is essential that

all users choose the same mechanism. Failure to do so will result in damaged files and

loss of data.

Component File options

278 Dyalog APL/W User Guide

Default

The default control mechanism employs standard DOS file facilities and is the

recommended option for use under all versions of Microsoft Windows. This

mechanism is applied if the File_Control parameter is set to 2.

FSCB in file

This option is provided to allow you to share component files with users running

earlier Versions of Dyalog APL. It may also be applicable in networks where the

standard DOS file facilities do not apply or are unreliable.

If you choose this option, the File System Control Block (FSCB) is a single control file

which normally resides on a network server. The name of the file, which must be

accessible by all users for read and write operations, is defined by the aplfscb

parameter. The FSCB file records information about system-wide component file ties

and holds and is dynamically updated whenever any APL application uses �FCREATE,

�FERASE, �FTIE, �FSTIE, �FHOLD, �FUNTIE. The FSCB file is also used by

�XT to administer access to External Variables. This mechanism is applied if the

File_Control parameter is set to 1.

The use of this option is discussed in detail below. Under normal circumstances, it

meets all design criteria. However, it has the disadvantage that it does not recover

automatically when an APL session that has component files tied terminates

abnormally. If this happens, it is necessary to reset the FSCB file manually.

FSCB in memory

This option is suitable for use if you are certain that you will never need to share files

with other users nor between two APL sessions on your PC. The mechanism is

essentially the same as the FSCB in file, except that it is implemented in memory and

provides the best performance of the three control mechanisms available. This

mechanism is applied if the File_Control parameter is set to 0.

 Chapter 3: APL Files 279

The FSCB File

How it Works
Consider the multi-user environment shown below:

 .---------------. .---------------.
 | APL PROCESS 1 | | APL PROCESS 2 |
 ----------------. ----------------.
 | | | |

 �FTIE �FSTIE �FSTIE �FSTIE
 | �FHOLD | |

.-----. .-----------------------------. .--------.
|INDEX| | PERSONNEL | |SALARIES|
------. ------------------------------. ---------.

Here there are two APL processes running. APL1 has exclusively tied the INDEX file,

and has share-tied the PERSONNEL file, then issued a �FHOLD. APL2 has share-tied

the PERSONNEL file and the SALARIES file. In this case, the FSCB would contain

entries similar to those shown below:

 .----------------------.
 | APL1 | APL2 |
.------------.------------.---------�
INDEX	tie	
PERSONNEL	share/hold	share
SALARIES		share
------------------------------------.

This table is amended every time one of the file functions shown below are used:

 �FCREATE �FERASE �FHOLD
 �FSTIE �FTIE �FUNTIE
 �XT

280 Dyalog APL/W User Guide

Error Conditions

FILE SYSTEM NOT AVAILABLE

In a PC network, or in a single-processor Unix environment, if the FSCB file is

missing or inaccessible (restricted access permissions) the report FILE SYSTEM
NOT AVAILABLE (Error code 28) will be given. The same error will occur under

NFS if the aplfscb "daemon" is not running.

FILE SYSTEM TIES USED UP

The FSCB file has a limited capacity and when that capcity is reached the report FILE
SYSTEM TIES USED UP (Error code 30) will be given.

FILE TIED

A FILE TIED error is reported if you attempt to tie a file which another user has

exclusively tied. However, it is possible to get spurious FILE TIED errors in a

network for the following reason.

If an APL session has component files tied or has External Variables associated, and

terminates abnormally, the FSCB will continue to record the file ties, even though

the session is no longer running. To prevent another user (or even the same application

restarted) from getting spurious FILE TIED errors, APL checks whether the process

flagged as having a file tied is actually running. If not, the entry is cleared and the new

tie honoured.

In a networked environment, it is not possible for a process running on one node to

check the status of a process running on another. If a node with component files tied

crashes, its file ties will remain (incorrectly) recorded in the FSCB until either that

node itself attempts to re-tie the files or until the FSCB is re-initialised.

 Chapter 3: APL Files 281

Limitations

File Tie Quota

The File Tie Quota is the maximum number of files that a user may tie concurrently.

Dyalog APL itself allows a maximum of 128 under Unix and Windows, although in

either case your installation may impose a lower limit. When an attempt is made to

exceed this limit, the report FILE TIE QUOTA (Error code 31) is given. On a UNIX

system, there is a system-wide and a per-user limit on the number of open file

descriptors. On many systems, the per-user limit is 20, and the system-wide limit about

100. Both limits are usually parameters specified when Unix is installed. Under

Windows, the maximum number of open files permitted is specified by the "FILES="

statement in CONFIG.SYS.

File Name Quota

Dyalog APL records the names of each user's tied files in a buffer of 5120 bytes. When

this buffer is full, the report FILE NAME QUOTA USED UP (Error code 32) will be

given. This is only likely to occur if long pathnames are used to identify files.

282 Dyalog APL/W User Guide

The Effect of Buffering
Disk drives are fairly slow devices, so most operating systems take advantage of a

facility called buffering. This is shown in simple terms below:

.------------------.
| Operating System | .--------. .---------.
| instruction to |-->| BUFFER |--->| File on |
| write large data | ---------. | disk |
| object to a file | ----------.
-------------------.

When you issue a write to a disk area, the data is not necessarily sent straight to the

disk. Sometimes it is written to an internal buffer (or cache), which is usually held in

(fast) main memory. When the buffer is full, the contents are passed to the disk. This

means that at any one time, you could have data in the buffer, as well as on the disk. If

you machine goes down whilst in this state, you could have a partially updated file on

the disk. In these circumstances, the operating system generally recovers your file

automatically.

If this facility is exploited, it offers very fast file updating. For systems that are I/O

bound, this is a very important consideration. However, the disadvantage is that whilst

it may appear that a write operation has completed successfully, part of the data may

still be residing in the buffer, waiting to be flushed out to the disk. It is usually possible

to force the buffer to empty; see your operating system manuals for details (UNIX

automatically invokes the sync command every few seconds to flush its internal

buffers).

Dyalog APL exploits this facility, employing buffers internal to APL as well as making

use of the system buffers. Of course, these techniques cannot be used when the file is

shared with other users; obviously, the updates must be written immediately to the

disk. However, if the file is exclusively tied, then several layers of buffers are

employed to ensure that file access is as fast as possible.

You can ensure that the contents of all internal buffers are flushed to disk by issuing

�FUNTIE � at any time.

 Chapter 3: APL Files 283

APL File Integrity Check
qfsck is an auxiliary processor that checks the internal structure of an APL file.

qfsck defines two external functions, qfsck and qfem. The function qfsck

performs the integrity check. If the check fails for some reason, an error code is

signalled, which may be trapped. The function qfem returns the relevant error message

that corresponds to a given error number.

The function qfsck is monadic, and takes as an argument a character vector

specifying the pathname of the file to be checked. Note that under Windows, the file

extension .DCF is not assumed and must be supplied. qfsck returns its argument as a

shy result, but signals an error and exits if any fault is detected in the structure of the

component file.

The function qfem is monadic, and takes as a single numeric argument, specifying an

event code. qfem returns a character vector containing the event message

corresponding to the given event code. If an invalid event code is supplied to qfem,

then qfem returns the character vector 'Unknown event code'.

284 Dyalog APL/W User Guide

Error Reports
If a problem is encountered by qfsck, one of the event codes below will be signalled.

If this event code is supplied to qfem, the associated error report will be returned.

Error Code Error Report

260 Space not accounted for

261 Error or unexpected EOF reading file

262 Unable to open file

263 Invalid magic number

264 Incorrect index tree depth

265 Block overlap

266 Pointer out of range

267 Component count wrong

268 Too large to check

269 Address tree not ordered

270 Span tree not ordered

271 Address tree not balanced

272 Span tree not balanced

273 Address tree/Span tree totals differ

274 Address tree/Span tree contents differ

275 Address tree too deep

276 Span tree too deep

277 Link value invalid

278 Has active Journal

 Chapter 3: APL Files 285

Operating System Commands
APL files are treated as normal data files by the operating system, and may be

manipulated by any of the standard operating system commands.

However, you must be aware of the possible effects of manipulating APL files outside

APL. Please note that these are not only applicable to APL; any system expects its files

to be accessed only by co-operating tasks.

Do not use operating system commands to copy, erase or move component files that

are tied and in use by an APL session.

Error Messages
There is a set of APL error messages associated with the APL file system. These are

fully documented in the Language Reference. Most of the messages are self-

explanatory, but some of those that relate to external variables can be confusing:

VALUE ERROR

You have associated a variable with a new file that as yet has no value.

DOMAIN ERROR

You have tried to associate a variable with an invalid file name.

FILE TIED

You have already associated this file with a variable.

FILE ACCESS ERROR

You do not have access to this file. Ask the owner to give you access permission, using

the appropriate operating system command.

286 Dyalog APL/W User Guide

 287

C H A P T E R 4

Error Trapping

Error Trapping Concepts
The purpose of this section is to show some of the ways in which the ideas of error

trapping can be used to great effect to change the flow of control in a system.

Most APLs have error trapping facilities in one form or another, but this section

discusses the facilities available to a Dyalog APL programmer.

First, we must have an idea of what is meant by error trapping. We are all used to

entering some duff APL code, and seeing a (sometimes) rather obscure, esoteric error

message echoed back:

 10÷0
 DOMAIN ERROR
 10÷0
 :

Now, these sorts of error messages are fine for us clever APL programmers, but

meaningless to most of our users. We need to find a way to bypass the default action of

APL, so that we can take an action of our own.

Every error message reported by Dyalog APL has a corresponding error number (for a

list of error codes and message, see �TRAP, Language Reference). Many of these error

numbers plus messages are common across all versions of APL. We can see that the

code for DOMAIN ERROR is 11, whilst LENGTH ERROR has code 5.

Dyalog APL provides two distinct but related mechanisms for the trapping and control

of errors. The first is based on the control structure: :Trap ... :EndTrap, and the

second, on the system variable: �TRAP. The control structure is easier to administer

and so is recommended for normal use, while the system variable provides slightly

finer control and may be necessary for specialist applications.

288 Dyalog APL/W User Guide

Last Error number and Diagnostic Message
Dyalog APL keeps a note of the last error that occurred, and provides this information

through system functions: �EN, �EM and �DM.

 10÷0
 DOMAIN ERROR
 10÷0
 :

Error Number for last occurring error:

 �EN
 11

Error Message associated with code 11:

 �EM 11
 DOMAIN ERROR

�DM (Diagnostic Message) is a 3 element nested vector containing error message,

expression and caret:

 �DM
 DOMAIN ERROR 10÷0 :

Use function DISPLAY to show structure:

 DISPLAY �DM
 .----------------------------------.
 |.------------..----------..------.|
 ||DOMAIN ERROR|| 10÷0|| :||
 |'------------''----------''------'|
 '�---------------------------------'

Mix (�) of this vector produces a matrix that displays the same as the error message

produced by APL:

 ��DM
 DOMAIN ERROR
 10÷0
 :

 Chapter 4: Error Trapping 289

Error Trapping Control Structure
You can embed a number of lines of code in a :Trap control structure within a

defined function.

 [1] ...
 [2] :Trap 0
 [3] ...
 [4] ...
 [5] :EndTrap
 [6] ...

Now, whenever any error occurs in one of the enclosed lines, or in a function called

from one of the lines, processing stops immediately and control is transferred to the

line following the :EndTrap. The 0 argument to :Trap, in this case represents any

error. To trap only specific errors, you could use a vector of error numbers:

 [2] :Trap 11 2 3

Notice that in this case, no extra lines are executed after an error. Control is passed to

line [6] either when an error has occurred, or if all the lines have been executed

without error. If you want to execute some code only after an error, you could re-code

the example like this:

 [1] ...
 [2] :Trap 0
 [3] ...
 [4] ...
 [5] :Else
 [6] ...
 [7] ...
 [8] :EndTrap
 [9] ...

Now, if an error occurs in lines [3-4], (or in a function called from those lines),

control will be passed immediately to the line following the :Else statement. On the

other hand, if all the lines between :Trap and :Else complete successfully, control

will pass out of the control structure to (in this case) line [9].

290 Dyalog APL/W User Guide

The final refinement is that specific error cases can be accommodated using

:Case[List] constructs in the same manner as the :Select control structure.

 [1] :Trap 17+Ι21 & Component file errors.
 [2] tie>name �ftie 0 & Try to tie file
 [3] 'OK'
 [4] :Case 22
 [5] 'Can''t find ',name
 [6] :CaseList 25+Ι13
 [7] 'Resource Problem'
 [8] :Else
 [9] 'Unexpected Problem'
 [10] :EndTrap

Note that :Trap can be used in conjunction with �SIGNAL described below.

Traps can be nested. In the following example, code in the inner trap structure attempts

to tie a component file, and if unsuccessful, tries to create one. In either case, the tie

number is then passed to function: ProcessFile. If an error other than 22 (FILE
NAME ERROR) occurs in the inner trap structure, or an error occurs in function

ProcessFile (or any of its called function), control passes to line immediately to

line [9].

 [1] :Trap 0
 [2] :Trap 22
 [3] tie>name �ftie 0
 [4] :Else
 [5] tie>name �fcreate 0
 [6] :EndTrap
 [7] ProcessFile tie
 [8] :Else
 [9] 'Unexpected Error'
 [10] :EndTrap

 Chapter 4: Error Trapping 291

Trap System Variable: �TRAP�TRAP�TRAP�TRAP
The second way of trapping errors is to use the system variable: �TRAP. �TRAP, can

be assigned a nested vector of trap specifications. Each trap specification is itself a

nested vector, of length 3, with each element defined as:

list of error numbers(s) : The error numbers we are

 interested in.

action code : Either 'E' (Execute) or

 'C' (Cut Back). There

 are others, but they are

 seldom used.

action to be taken : APL expression, usually a

 branch statement or a

 call to an APL function.

So a single trap specification may be set up as:

 �TRAP>5 'E' 'ACTION1'

and a multiple trap specification as:

 �TRAP>(5 'E' 'ACTION1')((1 2 3) 'C' 'ACTION2')

The action code E tells APL that you want your action to be taken in the function in

which the error occurred, whereas the code C indicates that you want your action to be

taken in the function where the �TRAP was localised. If necessary, APL must first

travel back up the execution stack (cut-back) until it reaches that function.

292 Dyalog APL/W User Guide

Example Traps
These action codes are best illustrated by example.

Dividing by Zero
Let's try setting a �TRAP on DOMAIN ERROR:

 MSG>'''Please give a non-zero right arg'''
 �TRAP>11 'E' MSG

When we enter:

 10÷0

APL executes the expression, and notes that it causes an error number 11. Before

issuing the standard error, it scans its �TRAP table, to see if you were interested

enough in that error to set a trap; you were, so APL executes the action specified by

you:

 10÷0
 Please give non-zero right arg

Let's reset our �TRAP:

 �TRAP>0Ρ�TRAP & No traps now set

and write a defined function to take the place of the primitive function ÷:

 S R>A DIV B
 [1] R>A÷B
 [2] S

Then run it:

 10 DIV 0
 DOMAIN ERROR
 DIV[1] R>A÷B
 :

 Chapter 4: Error Trapping 293

Let's edit our function, and include a localised �TRAP:

 S R>A DIV B;�TRAP
 [1] & Set the trap
 [2] �TRAP>11 'E' '-ERR1'
 [3] & Do the work; if it results in error 11,
 [4] & execute the trap
 [5] R>A÷B
 [6] & All OK if we got to here, so exit
 [7] -0
 [8] & Will get here only if error 11 occurred
 [9] ERR1:'Please give a non-zero right arg'
 S

Running the function with good and bad arguments has the desired effect:

 10 DIV 2
 5

 10 DIV 0
 Please give a non-zero right arg

�TRAP is a variable like any other, and since it is localised in DIV, it is only effective

in DIV and any other functions that may be called by DIV. So

 10÷0
 DOMAIN ERROR
 10÷0
 :

still gives an error, since there is no trap set in the global environment.

294 Dyalog APL/W User Guide

Other Errors
What happens to our function if we run it with other duff arguments:

 1 2 3 DIV 4 5
 LENGTH ERROR
 DIV [4] R>A÷B
 :

Here is an error that we have taken no account of.

Change DIV to take this new error into account:

 S R>A DIV B;�TRAP
 [1] & Set the trap
 [2] �TRAP>(11 'E' '-ERR1')(5 'E' '-ERR2')
 [3] & Do the work; if it results in error 11,
 [4] & execute the trap
 [5] R>A ÷ B
 [6] & All OK if we got to here, so exit
 [7] -0
 [8] & Will get here only if error 11 occurred
 [9] ERR1:'Please give a non-zero right arg'�-0
 [10] & Will get here only if error 5 occurred
 [11] ERR2:'Arguments must be same length'
 S

)RESET

 1 2 3 DIV 4 5
 Arguments must be the same length

But here's yet another problem that we didn't think of:

 (2 3ΡΙ6) DIV (2 3 4ΡΙ24)
 RANK ERROR
 DIV [4] R>A÷B
 :

 Chapter 4: Error Trapping 295

Global Traps
Often when we are writing a system, we can't think of everything that may go wrong

ahead of time; so we need a way of catching "everything else that I may not of thought

of". The error number used for "everything else" is zero:

)RESET

Set a global trap:

 �TRAP > 0 'E' ' ''Invalid arguments'' '

And run the function:

 (2 3ΡΙ6) DIV (2 3 4ΡΙ24)
 Invalid arguments

In this case, when APL executed line 4 of our function DIV, it encountered an error

number 4 (RANK ERROR). It searched the local trap table, found nothing relating to

error 4, so searched further up the stack to see if the error was mentioned anywhere

else. It found an entry with an associated Execute code, so executed the appropriate

action AT THE POINT THAT THE ERROR OCCURRED. Let's see what's in the

stack:

)SI
 DIV[4]*

 ��DM
 RANK ERROR
 DIV[4] R>A÷B
 :

So although our action has been taken, execution has stopped where it normally would

after a RANK ERROR.

296 Dyalog APL/W User Guide

Dangers
We must be careful when we set global traps; let's call the non-existent function BUG

whenever we get an unexpected error:

)RESET
 �TRAP > 0 'E' 'BUG'
 (2 3ΡΙ6) DIV (2 3 4ΡΙ24)

Nothing happens, since APL traps a RANK ERROR on line 4 of DIV, so executes the

trap statement, which causes a VALUE ERROR, which activates the trap action, which

causes a VALUE ERROR, which etc. etc. If we had also chosen to trap on 1000

(ALL INTERRUPTS), then we'd be in trouble!

Let's define a function BUG:

 S BUG
 [1] & Called whenever there is an unexpected error
 [2] '*** UNEXPECTED ERROR OCCURRED IN: ',E1.�SI
 [3] '*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
 [4] '*** WORKSPACE SAVED AS BUG.',E1.�SI
 [5] & Tidy up ... reset �LX, untie files ... etc
 [6] �SAVE 'BUG.',E1.�SI
 [7] '*** LOGGING YOU OFF THE SYSTEM'
 [8] �OFF
 S

Now, whenever we run our system and an unexpected error occurs, our BUG function

will be called.

 10 DIV 0
 Please give non-zero right arg

 (2 3ΡΙ6) DIV (2 3 4ΡΙ12)

 *** UNEXPECTED ERROR OCCURRED IN: DIV
 *** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
 *** WORKSPACE SAVED AS BUG.DIV
 *** LOGGING YOU OFF THE SYSTEM'

The system administrator can then load BUG.DIV, look at the SI stack, discover the

problem, and fix it.

 Chapter 4: Error Trapping 297

Looking out for Specific Problems
In many cases, you can of course achieve the same effect of a trap by using APL code

to detect the problem before it happens. Consider the function TIE∆FILE, which

checks to see if a file already exists before it tries to access it:

 S R>TIE∆FILE FILE;FILES
 [1] & Tie file FILE with next available tie number
 [2] &
 [3] & All files in my directory
 [4] FILES>�FLIB 'mydir'
 [5] & Remove trailing blanks
 [6] FILES>dbr¨.FILES
 [7] & Required file in list?
 [8] -ERR×Ι�(�FILE)�FILES
 [9] & Tie file with next number
 [10] FILE �FTIE R>1+B/0,�FNUMS
 [11] & ... and exit
 [12] -0
 [13] & Error message
 [14] ERR:R>'File does not exist'
 S

This function executes the same code whether the file name is right or wrong, and it

could take a while to get all the file names in your directory. It would be neater, and

more efficient to take action ONLY when the file name is wrong:

 S R>TIE∆FILE FILE;�TRAP
 [1] & Tie file FILE with next available tie number
 [2] &
 [3] & Set trap
 [4] �TRAP>22 'E' '-ERR'
 [5] & Tie file with next number
 [6] FILE �FTIE R>1+B/0,�FNUMS
 [7] & ... and exit if OK
 [8] -0
 [9] & Error message
 [10] ERR:R>'File does not exist'

298 Dyalog APL/W User Guide

Cut-Back versus Execute
Let us consider the effect of using Cut-Back instead of Execute. Consider the system

illustrated below, in which the function REPORT gives the user the option of 4 reports

to be generated:

 REPORT
 |
 .-------------------------.
 | | | |
REP1 REP2 REP3 REP4
 |
 .----.----.
 | | |
 ... DIV ...

where REPORT looks something like this:

 S REPORT;OPTIONS;OPTION;�TRAP
 [1] & Driver functions for report sub-system. If an
 [2] & unexpected error occurs, take action in the
 [3] & function where the error occurred
 [4] &
 [5] & Set global trap
 [6] �TRAP>0 'E' 'BUG'
 [7] & Available options
 [8] OPTIONS>'REP1' 'REP2' 'REP3' 'REP4'
 [9] & Ask user to choose
 [10] LOOP:-END×Ι0=ΡOPTION>MENU OPTIONS
 [11] & Execute relevant function
 [12] �OPTION
 [13] & Repeat until EXIT
 [14] -LOOP
 [15] & Now end
 [16] END:

Suppose the user chooses REP3, and an unexpected error occurs in DIV.

The good news is that the System Administrator gets a snapshot copy of the workspace

that he can play about with:

)LOAD BUG.DIV & Load workspace
 saved

)SI & Where did error occur?
 DIV[4]*
 REP3[6]
 �
 REPORT[7]

 Chapter 4: Error Trapping 299

 ��DM & What happened?
 RANK ERROR
 DIV[4] R>A÷B
 :

 S & Edit function on top of stack
 [0]R>A DIV B

The bad news is, our user is locked out of the whole system, even though it may only

be REP3 that has a problem. We can get around this by making use of the CUT-BACK

action code.

 S REPORT;OPTIONS;OPTION;�TRAP
 [1] & Driver functions for report sub-system. If an
 [2] & unexpected error occurs, cut the stack back
 [3] & to this function, then take action
 [4] &
 [5] & Set global trap
 [6] �TRAP>0 'C' '-ERR'
 [7] & Available options
 [8] OPTIONS>'REP1' 'REP2' 'REP3' 'REP4'
 [9] & Ask user to choose
 [10] LOOP:-END×Ι0=ΡOPTION>MENU OPTIONS
 [11] & Execute relevant function
 [12] �OPTION
 [13] & Repeat until EXIT
 [14] -LOOP
 [15] & Tell user ...
 [16] ERR:MESSAGE'Unexpected error in',OPTION
 [17] & ... what's happening
 [18] MESSAGE'Removing from list'
 [19] & Remove option from list
 [20] OPTIONS>OPTIONS��OPTION
 [21] & And repeat
 [22] -LOOP
 [23] & End
 [24] END:

Suppose the user runs this version of REPORT and chooses REP3. When the

unexpected error occurs in DIV, APL will check its trap specifications, and see that the

relevant trap was set in REPORT with a cut-back code. APL therefore cuts back the

stack to the function in which the trap was localised, THEN takes the specified

action. Looking at the SI stack above, we can see that APL must jump out of DIV,

then REP3, then �, to return to line 7 of REPORT; THEN it takes the specified action.

300 Dyalog APL/W User Guide

Signalling Events
It would be useful to be able to employ the idea of cutting back the stack and taking an

alternative route through the code, when a condition other than an APL error occurs.

To achieve this, we must be able to trap on errors other than APL errors, and we must

be able to define these errors to APL. We do the former by using error codes in the

range 500 to 999, and the latter by using �SIGNAL.

Consider our system; ideally, when an unexpected error occurs, we want to save a

snapshot copy of our workspace (execute BUG in place), then immediately jump back

to REPORT and reduce our options. We can achieve this by changing our functions a

little, and using �SIGNAL:

 S REPORT;OPTIONS;OPTION;�TRAP
 [1] & Driver functions for report sub-system. If an
 [2] & unexpected error occurs, make a snapshot copy
 [3] & of the workspace, then cutback the stack to
 [4] & this function, reduce the option list & resume
 [5] & Set global trap
 [6] �TRAP>(500 'C' '-ERR')(0 'E' 'BUG')
 [7] & Available options
 [8] OPTIONS>'REP1' 'REP2' 'REP3' 'REP4'
 [9] & Ask user to choose
 [10] LOOP:-END×Ι0=ΡOPTION>MENU OPTIONS
 [11] & Execute relevant function
 [12] �OPTION
 [13] & Repeat until EXIT
 [14] -LOOP
 [15] & Tell user ...
 [16] ERR:MESSAGE'Unexpected error in',OPTION
 [17] & ... what's happening
 [18] MESSAGE'Removing from list'
 [19] & Remove option from list
 [20] OPTIONS>OPTIONS��OPTION
 [21] & And repeat
 [22] -LOOP
 [23] & End
 [24] END:

 S BUG
 [1] & Called whenever there is an unexpected error
 [2] '*** UNEXPECTED ERROR OCCURRED IN: ',E1.�SI
 [3] '*** PLEASE CALL YOUR SYSTEM ADMINISTRATOR'
 [4] '*** WORKSPACE SAVED AS BUG.',E1.�SI
 [5] & Tidy up ... reset �LX, untie files ... etc
 [6] �SAVE 'BUG.',E1.�SI
 [7] '*** RETURNING TO DRIVER FOR RESELECTION'
 [8] �SIGNAL 500
 S

 Chapter 4: Error Trapping 301

Now when the unexpected error occurs, the first trap specification catches it, and the

BUG function is executed in place. Instead of logging the user off as before, an error

500 is signalled to APL. APL checks its trap specifications, sees that 500 has been set

in REPORT as a cut-back, so cuts back to REPORT before branching to ERR.

Flow Control
Error handling, which employs a combination of all the system functions and variables

described, allows us to dynamically alter the flow of control through our system, as

well as allow us to handle errors gracefully. It is a very powerful facility, which is

simple to use, but is often neglected.

302 Dyalog APL/W User Guide

 303

Index

����
�CMD ... 33, 34

�PW.. 94

�SE.............................. 24, 59, 83, 111, 244–53

�WX.. 16, 151

.

.Net Metadata .. 176

A

ActiveX control ... 45

ActiveXControl object................................. 162

APL files.............................See component files

APL fonts .. 249

aplcore ... 12, 14, 52

aplcorename parameter.................................. 12

aplfscb parameter... 12

aplk parameter 12, 60, 132

aplkeys parameter 12, 132

aplnid parameter 12, 137, 263

aplt parameter .. 13, 133

apltrans parameter 13, 133

aplunicd.ini .. 46

Auto Complete .. 92

auto_pw parameter 13, 94, 141

autocomplete

registry entries ... 30

AutoFormat parameter........................... 13, 145

AutoIndent parameter 13, 146

auxiliary processors 33

B

bridge dll.. 42, 43, 45

Browse .Net Assembly dialog box 187

Build runtime application 40

C

CancelKey (AutoComplete) parameter 147

charts

registry entries ... 30

class constructor .. 190

Classes

browsing .. 172

Classic Dyalog mode 220

dependant trace windows......................... 229

independant trace windows...................... 229

multiple trace windows............................ 228

single trace window 229

Classic Edition.. 2, 11, 12, 21, 26, 60, 109, 116,

127, 211

ClassicMode parameter .. 14, 16, 17, 19, 24, 25,

145, 206

CloseAll system operation........................... 110

C

colour selection dialog................................. 152

colours

registry entries ... 30

colourscheme parameter 130

Cols (AutoComplete) parameter 147

COM server

in-process... 44

out-of-process .. 44

command line .. 9

CommonKey (AuotComplete) parameter.... 147

Compatibility ... 5

CompleteKey (AutoComplete) parameter ... 147

component files.. 261

access control... 263

buffering .. 282

compatibility .. 5

control mechanisms 277

file design .. 273

integrity check ... 283

internal structure 274

multi-user access...................................... 270

programming techniques.......................... 270

using .. 267

configuration

keyboard .. 60

session.. 248

configuration dialog..................................... 129

304 Index

autocomplete tab147

general tab ..129

input tab ...132

keyboard shortcuts tab..............................134

log tab...142

network tab...136

object syntax tab.......................................150

output tab ...133

session tab ..140

trace/edit tab...144

unicode input tab131

windows tab ...138

workspace tab...135

configuration parameters................................10

confirm_abort parameter........................14, 145

confirm_close parameter........................14, 145

confirm_fix parameter............................14, 145

confirm_session_delete parameter14

Constructors folder.......................................190

context menu..89, 90

COPY system command54

Create (session event)244

Create bound file dialog...............................107

CreateAplCoreonSyserror56

CreateAplcoreOnSyserror parameter14

creating executables38

CurObj (session property)62, 245

CurPos (session property)245

CurSpace (session property)245

D

DatabaseType parameter................................37

Debugging Threads233

default_div parameter15, 141

default_io parameter15, 141

default_ml parameter15, 141

default_pp parameter..............................15, 141

default_pw parameter.....................................15

default_rl parameter15, 141

default_rtl parameter16, 141

default_wx parameter.............16, 114, 141, 151

DefaultHelpCollection parameter15

DefaultType parameter37

delay parameter ..130

DockableEditWindows parameter16, 145

Docking ..84

dos_32.dll ...42, 47

DOSUTILS workspace47

DoubleClickEdit parameter16, 146

Dyalog APL DLL...49

classes, instances and cloning49

workspace management50

dyalog parameter11, 12, 16

dyalog.chm ...17

dyalog32.dll..42, 47

DyalogEmailAddress parameter.....................16

DyalogHelpDir parameter17

DyalogInstallDir parameter17

dyalognet dll.......................................42, 43, 45

DyalogWebSite parameter17

E

edit window geometry....................................17

edit_cols parameter17, 139

edit_first_x parameter17

edit_first_y parameter17, 139

edit_offset_x parameter..........................17, 139

edit_offset_y parameter..........................17, 139

edit_rows parameter17, 139

editor

edit menu..210

file menu...209

invoking..202

using ...214

view menu ..212

windows menu..213

editor toolbar ..208

EditorState parameter18

Enabled (AutoComplete) parameter.............147

Enums...186

environment variables10, 11

ErrorOnExternalException parameter17

Event (session property)...............................246

Event Sets...185

event viewer

registry entries ..30

executing expressions.....................................93

execution (tracing)..226

exit codes..10

Export menu item...38

 Index 305

external variables... 257

sharing ... 36, 259

F

File (session property) 246

file extensions.. 1

File_Control parameter............ 12, 18, 137, 278

file_stack_size parameter 130

files

registry entries ... 30

find and replace dialogs............................... 216

docking .. 217

Font (session property) 246

FSCB in file... 278

error conditions.. 280

how it works .. 279

limitations .. 281

FSCB in memory... 278

G

GetEnvironment method................................ 11

greet_bitmap parameter 18

H

Handle (session property) 245

HintObj (session property) 246

History (AutoComplete) parameter 147

history_size parameter........................... 18, 143

HistorySize (AutoComplete) parameter 147

hot keys

syntax colouring 154

I
IndependentTrace parameter 19, 145

inifile parameter............................... 11, 19, 130

InitialKeyboardLayout parameter.......... 19, 131

InitialKeyboardLayoutInUse parameter 19, 131

Input (session property) 245

input codes... 78

input line.. 91

input translate table.. 12

input_size parameter.............................. 19, 143

interface with Windows................................. 33

Interoperability .. 5

interrupt ... 62

K

keyboard

configuration.. 60

layouts.. 72

line-drawing... 76

traditional... 74

unified.. 72

keyboard shortcuts ... 77

registry entries ... 31

Kibitzer .. 4

L

language bar

Session Window .. 92

Language Bar... 92

languagebar

registry entries ... 31

line numbers .. 214

line-drawing characters.................................. 76

lines_on_functions parameter 20, 130

localdyalogdir parameter 20

Log (session property) 245

log_file parameter .. 143

log_file_inuse parameter 143

log_size parameter 20, 143

logfile parameter.. 20

logfileinuse parameter 20

M

manifest fileSee XPLookandFeel

mapchars parameter 21

MaxCursors parameter................................... 37

MaxRows parameter 37

maxws parameter 22, 32, 135

Metadata .. 188

Methods folder... 192

Microsoft Document Explorer 15

mouse

using in session .. 61

N

Net asembly ... 45

306 Index

Net Classes...187

New method ...190

O

Object CoClasses ...180

Object Properties

COM Properties tab200

Monitor tab...199

Net Properties tab.....................................201

Properties tab ...197

Value tab ..198

Objects ...182

ODBC configuration37

OLEClient object176, 179

OLEServer object...162

On-Screen Keyboard..4

output translate table13

P

PassExceptionsToOpSys................................56

PassExceptionsToOpsys parameter22

pfkey_size parameter22, 143

Popup (session property)..............................246

Posn (session property)247

PrefixSize (AutoComplete) parameter147

print configuration

header/footer Tab158

margins tab...157

printer tab ...161

setup tab ...155

print configuration dialog.............................155

printing

registry entries..31

private ..190

programfolder parameter................................22

Properties folder...191

PropertyExposeRoot parameter23, 114, 151

PropertyExposeSE parameter.........23, 114, 151

Q

qcmd_timeout parameter................................23

qfsck auxiliary processor283

QUADNA workspace47

R

registry entries

run-time installation47

Rows (AutoComplete) parameter.................147

RunAsService parameter................................23

run-time

applications ..42

bound..43

workspace based...43

run-time applications......................................40

run-time dll...................................42, 43, 44, 45

run-time exe42, 43, 44, 47

S

SALT..148

registry entries ..31

SaveContinueOnExit parameter23, 243

SaveLogOnExit parameter23, 243

SaveSessionOnExit parameter24, 243

S

Serial parameter..24

session

configuring ...59, 248

file menu...104

help menu ...117

options menu ..114

session menu ..111

status bar...127

status field styles127

threads menu ..115

tools menu ..116

value tips ..95

session action menu......................................112

session colour scheme81

session log ..82, 91

session log menu ..112

session menubar ...104

action menu ..112

edit menu..109

file Menu ..104

help menu ...117

log menu...112

options menu ..114

 Index 307

session menu.. 111

threads menu.. 115

tools menu ... 116

view menu ... 110

windows menu... 110

session object..See �SE

Session popup menu 118

session statusfields....................................... 128

session toolbars.. 120

edit tools .. 125

object tools .. 122

session tools... 126

tools tools .. 124

workspace tools 121

session_file parameter 24, 60, 83, 141, 244

SharpPlot ... 99

Show trace stack on error 219

ShowFiles (AutoComplete) parameter 147

ShowStatusOnError parameter 24

SingleTrace parameter..................... 24, 25, 145

Size (session property) 247

sm_cols parameter 25, 139

sm_rows parameter................................ 25, 139

SPICE .. 148

SQAPL

in applications.. 46

sqapl.dll ... 46

sqapl.err ... 46

sqapl.ini ... 46

State (session property) 247

Status window 84, 162

StatusOnEdit parameter......................... 24, 145

syntax colouring .. 152

system error codes ... 53

system error dialog 22, 52, 54

system exceptions.. 53

system operations 60, 111, 250

T

TabStops parameter 13, 25, 146

Threads Tool.. 230

TipObj (session property) 247

trace tools .. 222

trace window geometry 25

trace_cols parameter 25

trace_first_x parameter 25, 139

trace_first_y parameter 25, 139

Trace_level_warn parameter.......................... 25

trace_offset_x parameter 25, 139

trace_offset_y parameter 25, 139

Trace_on_error parameter...................... 26, 219

trace_rows parameter..................................... 25

tracelevelwarn parameter............................. 145

traceonerror parameter................................. 145

tracer

automatic trace... 219

break-points ... 227

controlling execution 226

invoking ... 219

naked trace ... 219

tracing an expression 219

Tracer

Classic Dyalog mode 220

TraceStopMonitor parameter 26

trap control structure.................................... 289

trap system variable 291

Type Libraries...................................... 170, 176

U

underscored characters................................... 72

Unicode Edition................. 2, 4, 11, 19, 60, 127

UnicodeToClipboard parameter 26, 146

UTIL workspace 36, 259

V

value tips.. 95

colourscheme parameter 130

delay parameter.. 130

valuetips

registry entries ... 31

Version

binding version information..................... 108

Version information

for a bound executable 41

View menu (Session window) 110

viewcmd registry entry 102

W

windowrects

308 Index

registryentries...31

workspace explorer

registry entries..30

workspace integrity check..............................52

workspace size ...22, 32

WorkspaceLoaded (session event)244

wspath parameter26, 34, 135

WSPATH parameter47

X

xplookandfeel parameter26, 130

xplookandfeeldocker parameter27, 130

XVAR function36, 259

Y

year 2000 compliance.....................................27

yy_window parameter27

Dyalog Ltd
South Barn
Minchens Court
Minchens Lane
Bramley
Hampshire
RG26 5BH
United Kingdom
www.dyalog.com

